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Abstract
Kilonovae, the potential electromagnetic counterparts to neutron star mergers, offer
crucial insights into high-energy transient phenomena and provide a unique oppor-
tunity to probe the properties of the sources powering these events. However, signif-
icant uncertainties exist in kilonova modeling, which hinder the accurate prediction
and interpretation of observational data. These modeling uncertainties, if not prop-
erly accounted for, can lead to misinterpretations of key astrophysical parameters.

In this thesis, we present a novel data-driven approach for quantifying time-dependent
and filter-dependent systematic uncertainties in kilonova models. By incorporating
interpolation schemes that account for the non-stationary behavior of systematic er-
rors, our methodology enhances the reliability of parameter estimation for kilonova
events. Through a series of synthetic injection-recovery tests using the Ka2017
and Bu2019lm models, we validate the effectiveness of our approach in recovering
injected parameters within credible intervals.

We apply this method to the observed kilonova AT2017gfo, performing parameter
estimation with different time node configurations. Our results show that a com-
bination of time- and filter-dependent systematic uncertainties leads to the most
reliable recovery of the source parameters. Notably, we find a systematic error of
less than 1 magnitude between 1 and 5 days after the merger. Additionally, the
model reveals significant insights into the temporal and spectral evolution of sys-
tematic uncertainties, indicating the need for both early follow-up observations and
improved modeling techniques for later phases of kilonovae. These findings high-
light the importance of properly accounting for systematic uncertainties in kilonova
modeling, contributing to more precise multi-messenger astronomy and offering a
robust framework for future transient event studies.



Zusammenfassung
Kilonovae, die potenziellen elektromagnetischen Folgeerscheinungen von Neutronen-
sternverschmelzungen, bieten entscheidende Einblicke in hochenergetische kurzlebige
Phänomene und eine außergewöhnliche Gelegenheit, die Beschaffenheit der Quellen
zu untersuchen, die diese Erscheinungen verursachen. Allerdings bestehen bei der
Modellierung von Kilonovae erhebliche Unsicherheiten, die eine genaue Vorhersage
und Interpretation von Beobachtungsdaten erschweren. Diese Modellierungsun-
sicherheiten können, wenn sie nicht richtig berücksichtigt werden, zu Fehlinterpreta-
tionen wesentlicher astrophysikalischer Parameter führen.

In dieser Arbeit stellen wir einen neuen datengesteuerten Ansatz zur Quantifizierung
von zeit- und filterabhängigen systematischen Unsicherheiten in Kilonova-Modellen
vor. Durch die Einbeziehung von Interpolationsmethoden, die das nicht-stationäre
Verhalten von systematischen Fehlern berücksichtigen, verbessert unsere Methodik
die Zuverlässigkeit der Parameterschätzung für Kilonova-Ereignisse. Durch eine
Reihe von synthetischen Injection-Recovery-Tests unter Verwendung der Modelle
Ka2017 und Bu2019lm testen wir unseren Ansatz zur Wiederherstellung der in-
jizierten Parameter innerhalb von Glaubwürdigkeitsintervalle.

Wir wenden diese Methode für das gemessene Kilonova Signal AT2017gfo an und
führen eine Parameterschätzung mit verschiedenen Konfigurationen der Beobach-
tungszeiten durch. Unsere Ergebnisse zeigen, dass eine Kombination aus zeit- und
filterabhängigen systematischen Unsicherheiten die zuverlässigste Ermittlung der
Quellparameter ermöglicht. Insbesondere finden wir einen systematischen Fehler von
weniger als einer Magnitude zwischen einem und fünf Tagen nach der Verschmelzung.
Darüber hinaus liefert das Modell wichtige Erkenntnisse über die zeitliche und spek-
trale Entwicklung der systematischen Unsicherheiten und zeigt, dass sowohl frühe
Messungen als auch verbesserte Modellierungstechniken für spätere Phasen der Kilo-
novae notwendig sind. Diese Ergebnisse verdeutlichen wie wichtig die Berücksichti-
gung von systematische Unsicherheiten bei der Modellierung von Kilonovae ist. Un-
sere Methode bietet einen robusten Rahmen für zukünftige Studien dieser Ereignisse
und trägt damit zu einer genaueren Multi-Messenger-Astronomie bei.

Thank you Anna N. for the translation.
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1Introduction
The detection of the binary neutron star (BNS) merger GW170817 [4,5] on Au-
gust 17, 2017, by the Advanced Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) [6] and Advanced Virgo [7] marked a watershed moment in mul-
timessenger astronomy. This event, accompanied by the short gamma-ray burst
(GRB) GRB170817A detected by NASA’s Fermi Gamma-ray Space Telescope [8]
and the European Space Agency’s INTEGRAL [9], and followed by the kilonova
AT2017gfo [10,11] observed in the galaxy NGC4993, provided an unprecedented
opportunity to study the Universe through multiple messengers: gravitational waves
(GW) and electromagnetic (EM) waves. Occurring approximately 40Mpc away,
GW170817 signature chirp lasted nearly 100 seconds, far longer than typical black
hole merger signals, indicated the collision of two neutron stars with masses of
about 1.1 and 1.6 solar masses, confirmed by the near-instantaneous gamma-ray
flash just 1.74 seconds later. This joint detection, the first of its kind, alerted as-
tronomers worldwide, leading to a follow-up campaign that captured the fading
glow of AT2017gfo, interpreted as a kilonova—an EM transient powered by the
radioactive decay of r-process elements synthesized during the merger.

Figure 1.1: The middle panel shows the gravitational wave strain. The top and bottom panel
shows the gamma-ray observations from Fermi and INTEGRAL, respectively. The shaded region
indicates the 1.74 seconds delay between the GW and GRB detections. Image credit: ESA

The significance of GW170817 extends across multiple fields, enhancing our under-
standing of cosmology and Hubble tension [12–21], nuclear physics [4,19,22–28],
modified gravity theories [29–31], and the chemical evolution of the Universe [32–37].
While GW170817 remains the only confirmed multimessenger BNS merger, observa-
tional evidence suggests that GW190425 [38], GRB211211 [39–41], and GRB230307A [42]
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may also originate from similar mergers, hinting at an increasing likelihood of future
detections as observational facilities improve.

Figure 1.2: Galaxy NGC4993 as captured by Hubble showing the location of AT2017gfo. The
inset shows the artistic rendition of red component of the kilonova. Image credit: NASA

The interpretation of GW170817 and future multimessenger events relies on compar-
ing observational data with robust theoretical models. For GWs, systematic uncer-
tainties are well-controlled for current detectors [43–47], though next-generation
observatories like the Einstein Telescope [48–50] and Cosmic Explorer [51] will
demand even higher precision. However, with the EM counterpart, the challenges
are more complex. Kilonovae, spanning optical, ultraviolet, and infrared wave-
lengths, are driven by the radioactive decay of unstable heavy elements formed via
r-process nucleosynthesis [52,53]. Despite progress from simplified semi-analytical
models [11,37,53–60] to sophisticated 3D radiative transfer simulations [61–66]
uncertainties persist in ejecta properties (mass, velocity, composition) [67–71],
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nuclear heating rates, thermalization efficiencies, and opacities of r-process ele-
ments [72–79]. These uncertainties, if unaddressed, risk biasing parameter esti-
mates even if the data quality improves.

This thesis investigates how these uncertainties evolve over time and per filter, and
how they impact the inferred ejecta properties of kilonovae. By leveraging the
Nuclear-Physics and Multi-Messenger Astrophysics (NMMA) framework and high-
fidelity radiative transfer simulations from POSSIS [64], we aim to develop a more
robust methodology for incorporating time- and filter-dependent uncertainties into
kilonova analyses [1]. Our study focuses on AT2017gfo, the best-observed kilonova
to date, as a case study to assess the effects of evolving systematic uncertainties on
light curve modeling and parameter estimation. The insights gained from this work
will contribute to refining kilonova models for future multimessenger detections.
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2Anatomy of a Binary Neutron
Star Merger

2.1 Neutron Stars
Neutron stars emerge from the remnants of massive stars after a supernova explosion
expels the outer layers, leaving a core that collapses under gravity. When the core’s
mass exceeds the Chandrasekhar limit (approximately 1.4 M⊙), electron capture and
neutronization convert protons and electrons into neutrons. If the core mass exceeds
a critical value (around 2− 3 M⊙), the collapse continues until neutron degeneracy
pressure, supported by strong nuclear interactions at extreme densities, halts further
collapse and forms a neutron star. Fig. 2.1 → p.4 illustrates the evolution of a BNS
system, highlighting the potential outcomes based on the masses and rotational
energy of the remnant.

Figure 2.1: Fate of a BNS system depending on the masses and the rotational energy of the
remnant. Post merger, the BNS may collapse to a black hole (C), form a neutron star (D), or evolve
into a hypermassive neutron star that collapses to a black hole after losing angular momentum or
remain a stable neutron star (E, F, G, H). Image credit: Ref. [80]

2.1.1 Tolman-Oppenheimer-Volkoff Equation
The Tolman-Oppenheimer-Volkoff equations [81,82] describe the structure of a
static, spherically symmetric neutron star in general relativity, extending Newtonian
hydrostatic equilibrium to account for relativistic effects. They emerge from solving
the Einstein Field Equations [83] for a fluid ball under these conditions, providing
the pressure, density, and mass profiles as functions of radius.

In Newtonian mechanics, the balance between gravitational and pressure forces in
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a spherical body is governed by the equation of hydrostatic equilibrium. However,
as the density increases to extreme levels within compact objects like neutron stars,
relativistic corrections become essential. The TOV equations are derived from the
Einstein Field Equations for a perfect fluid, under the assumptions of staticity (no
motion) and spherical symmetry. The general relativistic metric for a static, spher-
ically symmetric star is given by

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2), (2.1)

where Φ(r) and λ(r) are functions of the radial coordinate r, representing the grav-
itational potential and the space-time curvature, respectively. The perfect fluid
model is described by the stress-energy tensor Tµν , which for a static, spherically
symmetric star takes the form,

Tµν = (ρ + p)uµuν + pgµν , (2.2)

where ρ is the energy density, p is the pressure, and uµ is the four-velocity of the
flluid.

The TOV equations are derived by solving the EFE with the metric in Eq. (2.1) → p.5

and the stress-energy tensor in Eq. (2.2) → p.5 , yielding three first-order differential
equations

dM(r)
dr

= 4πr2ρ(r) (2.3a)

dP (r)
dr

= −Gm(r)ρ(r)
r2

(
1 + P (r)

ρ(r)

)(
1 + 4πr3P (r)

m(r)

)(
1− 2Gm(r)

r

)−1

(2.3b)

dΦ(r)
dr

= − 1
ρ + P (r)

dP (r)
dr

, (2.3c)

where M(r) is the mass enclosed within radius r, and P (r) is the pressure at that
radius.

Eq. (2.3a) → p.5 expresses the mass conservation within a spherical shell of radius
r, Eq. (2.3b) → p.5 describes the pressure gradient in the star, balancing the gravi-
tational force with the pressure gradient, and Eq. (2.3c) → p.5 relates the gradient
of the gravitational potential to the pressure gradient, essentially describing how
the spacetime metric varies throughout the star. The TOV equations are typically
solved numerically to obtain the mass, radius, and density profiles of neutron stars,
providing insights into their structure and properties.

2.1.2 Equation of State
The TOV equations are fundamentally dependent on the equation of state (EOS)
of neutron star material, which defines the relationship between pressure P and
density ρ. The EOS encapsulates the microphysics of ultra-dense matter, governing
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how neutron stars resist gravitational collapse under extreme conditions. However,
the EOS at supranuclear densities (≳ 1014 g/cm3) remains poorly constrained due
to limitations in terrestrial experiments and theoretical uncertainties in quantum
chromodynamics and nuclear interactions.

For instance, a soft EOS, characterized by lower pressures at high densities, results
in greater compressibility, yielding smaller and less massive neutron stars with radii
typically around 10− 11 km and maximum masses closer to 1.4− 2 M⊙ [84]. Con-
versely, a stiff EOS, with higher pressures resisting compression, supports more mas-
sive neutron stars—potentially exceeding 2.5 M⊙with larger radii, up to 13 km [27,85].
These variations arise because the TOV pressure gradient balances gravity more ef-
fectively with a stiff EOS, allowing greater mass accumulation before collapse to
a black hole occurs, as supported by recent observational constraints from NICER
and GW170817 [27,86].

Figure 2.2: Mass-Radius curves made using several equation of states. Image credit: Norbert Wex
for MPIfR

2.2 Kilonova
Kilonovae, transient electromagnetic events are triggered by the merger of neutron
stars or a neutron star and a black hole. The name kilonova [87] stems from their
luminosity, which sits roughly 1000 times above that of a classical nova yet below
a typical supernova [52]. Kilonovae are characterized by their multi-wavelength
emission, spanning optical, ultraviolet, and infrared bands, and exhibit a distinctive
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light curve evolution over time. Few of the first possible kilonova candidates were ob-
served as the aftermath of the short gamma-ray bursts include GRB060614 [88,89],
GRB070809 [90], GRB080503 [91] GRB130603B [92], followed by the detection of
AT2017gfo associated with the binary neutron star merger GW170817 [10,11].1

The kilonova’s optical and infrared emission, peaking within a few days to weeks
post-merger, is powered by the radioactive decay of r-process elements, primarily
lanthanides and actinides, synthesized during the merger. The decay chain of these
heavy elements releases a large amount of energy, heating the ejecta and driving the
kilonova’s luminosity. The kilonova’s spectral evolution is characterized by a blue
to red color transition, reflecting the changing composition and temperature of the
expanding ejecta.

The early blue emission, peaking in the ultraviolet and optical bands, arises from the
radioactive decay of light r-process elements, while the later red emission, peaking in
the infrared, is powered by the decay of heavier elements. The kilonova’s light curve
exhibits a rapid rise to peak luminosity, followed by a gradual decline over weeks
to months as the ejecta cools and expands. The kilonova’s peak luminosity, color,
and duration depend on the ejecta mass, velocity, composition, and thermalization
efficiency, making them valuable probes of the merger dynamics and the proper-
ties of neutron star matter. Theoretical models of kilonovae have evolved from
simple analytical prescriptions [52,87] to sophisticated radiative transfer simula-
tions [61–66], capturing the complex interaction between nuclear heating, radiative
transport, and opacities of r-process elements.

2.2.1 Ejecta Properties
The material ejected during a neutron star merger forms the basis of a kilonova,
driving its observable signatures through radioactive decay and thermal emission.
Ejecta originate from multiple mechanisms, each contributing distinct mass, velocity,
and compositional profiles that shape the resulting light curves and spectra.

2.2.1.1 Dynamical Ejecta

Dynamical ejecta from NS-NS mergers consist of matter expelled on the character-
istic dynamical timescale (∼ 10ms) of the system, with typical masses on the order
of 10−4 − 10−2 M⊙ and velocities of 0.1 − 0.3c [93–96]. The total mass of this
ejecta depends strongly on the binary’s total mass, its mass ratio, and the neutron
star EOS. Eccentric NS-NS mergers can yield higher ejecta masses [97,98], but
such mergers likely occur less frequently in nature due to the high stellar densities
required for significant dynamical capture events [99]. Simulations also indicate
that very high neutron star spin can enhance the amount of dynamically ejected

1Even though a number of GRBs have been associated with neutron star mergers (these associ-
ations arise due to the lack of a supernova like component in the spectral features of these GRBs),
AT2017gfo/GRB170817A/GW170817 is the only confirmed kilonova candidate so far.
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matter [100–102]. When a neutron star merges with a black hole (NSBH), the
tidal disruption of the star by the black hole can unbind up to ∼ 0.1 M⊙ of material,
typically at similar velocities to those in NS-NS collisions [103–105].

In NS-NS systems, two hydrodynamical processes dominate the dynamical ejec-
tion. First, the contact interface between merging stars experiences strong compres-
sion and shock heating, which drives material outward as the remnant undergoes
quasi-radial pulsations [93,106,107]. This “shock-driven” component of the ejecta
emerges in a broad range of angular directions. Second, tidal interactions form spi-
ral arms in the equatorial plane, and angular momentum redistribution within these
arms propels additional matter outward. The relative importance of these mecha-
nisms depends on the binary mass ratio, strongly asymmetric mergers (q ≪ 1) tend
to eject more mass [107,108]. Ejecta masses also decrease if the remnant collapses
promptly into a black hole, since prompt collapse swallows the shocked interface
region before much matter can be expelled.

In NSBH mergers, the dominant ejection mechanism is a tidal disruption of the
neutron star by the black hole, which also focuses the outflow in the equatorial
plane [104,109]. The azimuthal extent of this tidal ejecta can be limited, implying
that kilonova emission may depend more sensitively on viewing angle in NSBH
systems than in NS-NS mergers.

Besides mass and velocity, the electron fraction Ye (ratio of protons to total nucleons)
of the dynamical ejecta is crucial for determining its role in r-process nucleosynthesis
and kilonova emission. Early simulations that neglected weak interactions found that
merger outflows are highly neutron-rich (Ye ≲ 0.1), suggesting robust production of
heavy elements with A ≳ 130 through fission recycling [107,110–112]. More recent
calculations that include electron captures and neutrino irradiation reveal a broader
range of electron fractions Ye ∼ 0.1−0.4, thereby allowing for the synthesis of lighter
r-process elements as well [94,113,114]. In NS-NS mergers, the higher Ye ejecta
tends to be more isotropic, whereas the lower Ye (and hence lanthanide-rich) material
often remains concentrated in the equatorial plane, reflecting its origin in the tidal
arms. This results in lanthanide-rich tidal ejecta (Ye < 0.25) and lanthanide-poor
polar ejecta (Ye > 0.25), influencing the kilonova’s spectral evolution and color.

2.2.1.2 Wind Ejecta

Wind ejecta are launched after the merger from the accretion disk or the central
compact object, in contrast to the dynamical ejecta expelled promptly during the
coalescence phase. The formation of a massive accretion disk (on the order of 0.01–
0.3 M⊙) is well established in numerical simulations and depends sensitively on the
total mass of the binary, the mass ratio, the spins of the merging bodies, and the neu-
tron star equation of state [53,115,116]. Prompt collapse of the merger remnant
into a black hole typically leads to lower disk masses because there is little time for
the remnant to redistribute its mass and angular momentum prior to collapse [117].
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Once the disk forms, a combination of neutrino heating, magnetic stresses, and
nuclear recombination drives sustained mass loss on timescales ranging from mil-
liseconds to seconds. During the earliest, high-accretion phase, strong neutrino
irradiation from the disk (and, if present, a hypermassive neutron star) can un-
bind material from the disk surface [118]. If the central neutron star survives
for longer than ∼ 50 ms, additional neutrino luminosity from the star itself ejects
non-negligible amounts of mass [119–121], potentially enhanced further by spiral
density waves excited in the disk [122]. Over time, as the disk expands viscously
and its temperature drops, it transitions from an initially neutrino-cooled configu-
ration to a radiatively inefficient, geometrically thicker state [116,123–125]. In
this later phase, weak interactions “freeze out,” allowing the outflows to remain
neutron-rich [123,126].

The wind outflows typically attain velocities of 0.1–0.3c and can have electron frac-
tions Ye spanning a broad range, from below 0.25 to above 0.3, depending on the
level and duration of neutrino irradiation [117,127,128]. Outflows with lower Ye

remain rich in lanthanides and produce red or infrared components of the kilonova,
while higher-Ye material can generate bluer emission [129,130].

Numerical simulations find that the fraction of the disk ultimately ejected through
these winds can be substantial, ranging from a few percent for low black hole spin
to as high as 30–40% or more for rapidly spinning black holes [117,127,131,132].
Even higher fractions, up to ∼ 90% of the disk, may be unbound if the central
remnant remains a long-lived neutron star instead of collapsing promptly to a black
hole [133,134]. The wind outflows typically attain velocities of 0.1–0.3c and can
have electron fractions Ye spanning a broad range, from below 0.25 to above 0.3,
depending on the level and duration of neutrino irradiation [117,127,128].

Magnetic fields also play a crucial role in shaping the wind dynamics. Turbulence
generated by the magneto-rotational instability transports angular momentum out-
ward and boosts mass loss. If the neutron star remnant is backed by a strong, large-
scale magnetic field (∼ 1014–1015 G), additional outflows can be driven centrifugally
along open field lines [135,136]. Although the exact origin and geometry of these
large-scale fields remains under investigation, they may account for particularly fast
ejecta components observed in kilonovae such as GW170817 [137].

Overall, wind ejecta from the disk and central remnant can rival or exceed the mass
of the prompt dynamical ejecta and thus represent a significant channel for both
mass loss and the synthesis of heavy elements in neutron star mergers [128,131,138].
Their observed features, especially the broad range of velocities and electron frac-
tions indicate that wind-driven outflows are key contributors to the multi-wavelength
kilonova emission, often shaping the luminosity and color evolution on timescales of
hours to days after the merger.



Chapter 2. Anatomy of a Binary Neutron Star Merger 10

Figure 2.3: Red colours denote regions of heavy r-process elements, which radiate red/infrared
light. Blue colours denote regions of light r-process elements which radiate blue/optical light.
During the merger, tidal forces peel off tails of matter, forming a torus of heavy r-process ejecta
in the plane of the binary. Material squeezed into the polar regions during the stellar collision
can form a cone of light r-process material. Roughly spherical winds from a remnant accretion
disk can also contribute, and are sensitive to the fate of the central merger remnant. (a): If the
remnant survives as a hot neutron star for tens of milliseconds, its neutrino irradiation lowers the
neutron fraction and produces a blue wind. (b): If the remnant collapses promptly to a black hole,
neutrino irradiation is suppressed and the winds may be red. (c): In the merger of a neutron star
and a black hole, only a single tidal tail is ejected, and the disk winds are more likely to be red.
Image and caption credit: Ref. [35]

2.2.2 Chemical Composition

The chemical composition of kilonova ejecta, determined by the electron fraction
Ye, governs nucleosynthesis pathways and radiative properties of the emitted light.
Ye governs the neutron-to-proton ratio during the r-process, which occurs in the
neutron-rich conditions immediately following ejection. In neutron-rich conditions
(Ye < 0.25) typical of tidal dynamical ejecta, enables the rapid neutron capture
process onto the seed nuclei, producing isotopes far beyond the stability line that
decay into heavy r-process elements, including lanthanides and actinides [139].
These elements, with their dense forest of atomic transitions, yield opacities of
κ ∼ 10− 100 cm2g−1, reddening emission and delaying photon escape [53].

On the other hand, the lanthanide-free ejecta (Ye > 0.25) prevalent in disk wind
ejecta and polar dynamical ejecta exposed to neutrino irradiation, limits neutron
availability, yielding lighter r-process elements such as Strontium [36] and Yt-
trium [140]. These elements exhibit simpler atomic structures, resulting in opacities
of κ ∼ 1− 10 cm2g−1, permitting greater photon escape in the optical and ultravio-
let bands. The transition between these regimes is not sharp; realistic ejecta likely
feature Ye gradient, blending lanthanide-rich and lanthanide-free regions within a
single outflow [11]. This gradient complicates radiative transfer calculations but
explains the multi-peaked light curves observed in events like AT2017gfo.
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Figure 2.4: Graphical sketch of the three ejecta components radially expanding from the remnant.
Different colors correspond to different matter opacity: high (red), intermediate (orange), and low
(blue). Image and caption credit: Ref. [11]

2.2.3 Heating
The primary energy source of kilonovae lies in the radioactive decay of r-process
nuclei within the ejecta, a process that heats the material and sustains its thermal
emission. This decay process releases energy through beta decay, alpha decay, and
fission, producing gamma rays, electrons, and neutrinos that deposit heat into the
surrounding material [87]. Following Refs. [53,111], this heating rate can be
expressed as

Q̇r,v = δMvXr,vėr(t), (2.4)
where Xr,v is the r-process mass fraction in mass layer Mv and er is the specific
heating rate. For Ye ≲ 0.25 i.e. neutron-rich ejecta ėr can be approximated as

ėr = 4× 1018εth,v
(
0.5− π−1 arctan[(t− t0)/σ]

)1.3
erg s−1 g−1, (2.5)

where t0 = 1.3s and σ = 0.11s are constants, and εth,m is the thermalization efficiency.
While Eq. (2.5) → p.11 describes a constant heating rate during the first second of the
kilonova, the later times can be well approximated by a power-law decay as reflecting
the cumulative contribution of multiple r-process isotopes decay,

ėr ≈
t≫t0

2× 1010εth,v

(
t

1 day

)−1.3

erg s−1 g−1. (2.6)

This power-law behavior characterizes the long-term energy deposition that sustains
kilonova emission over days to weeks.

2.2.4 Emission
The emission from kilonovae emerges as thermal radiation from the heated ejecta,
evolving as photons diffuse through the expanding material. Initially, the ejecta are
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optically thick, meaning radiation remains trapped until the diffusion timescale is
reached, approximated by,

tdiff ∼
3Mκ

4πRc
, (2.7)

where κ is the opacity, M is the mass of radius R, asumming an uniform average
density. Until the expansion timescale tdiff = t (Arnett’s Law [141]) is reached, the
diffusion time decreases with tdiff ∝ t−1 as the ejecta expands and eventually the
radiation escapes the ejecta. The peak luminosity of the kilonova occurs when the
diffusion time matches the expansion time, marking the transition from the optically
thick to the optically thin regime, given by,

tpeak ≡
(

3Mκ

4πβvc

)1/2

≈ 1.6 d
(

M

10−2M⊙

)1/2(
v

0.1c

)−1/2
(

κ

1 cm2 g−1

)1/2

, (2.8)

where β ≈ 3 depends on the density profile of the ejecta [107]. By varying the
opacity κ over a broad range from lanthanide-free to lanthanide-rich matter (0.5−
30 cm2g−1 [142]), Eq. (2.8) → p.12 yeilds characteristic kilonova durations from 1 day
to 1 week.

2.3 Toy Model
From Eq. (2.8) → p.12 , it is evident that kilonova observables are sensitive to the
ejecta mass, velocity, opacity and the sources contributing to the ejecta heating Q̇(t).
As discussed in Sec. 2.2.1 → p.7 and Sec. 2.2.2 → p.10 , the different ejecta components
and their characteristics can be combined to model the overall kilonova emission.
Following from Sec. 2.2.3 → p.11 , we construct a one-dimensional analytical toy model
from Ref. [53], under the assumption of homologous expansion [143]. In this
framework, the velocity of the ejecta is proportional to its distance from the merger
center and can be expressed as,

vi = ri

t− tmerger
, (2.9)

where ri is the radius of the material at time t−tmerger. In simpler terms, this implies
that material located farther from the center moves at a higher velocity. We first
describe the mass distribution of the ejecta, to this end we define it as a power-law
function of the velocity,

Mv = M
(

v

v0

)−β

, v ≥ v0, (2.10)

where M is the total mass of the ejecta, v0 is the minimum velocity of the ejecta, and
β is the power-law index and takes the value ≈ 3. Given the simplicity of this model
and complexity of numerical simulations, a single power-law index cannot truly
capture the diversity of ejecta properties, however this framework is flexible enough
in order to use multiple power-law indices to describe the ejecta mass distribution.
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Similar to Eq. (2.7) → p.12 , the radiation escapes from a given mass layer Mv on a
diffusion timescale td,v, which can be expressed as,

td,v = 3Mvκv

4πβRvc
, (2.11)

where κv is the opacity of the mass layer Mv and Rv = vt reflects the homologously
expanding ejecta. Subsitiuting the power-law distribution Eq. (2.10) → p.12 into the
diffusion timescale, we obtain,

td,v = M4/3
v κv

4πM1/3v0tc
. (2.12)

Setting td,v = t defines the mass depth from which radiation peaks at time t

Mv(t) =
{

M(t/tpeak)3/2, t < tpeak
M t > tpeak

, (2.13)

where tpeak is the time when diffusion occurs through the entire ejecta mass, typically
evaluated at v = v0. Outer layers (lower Mv) emit first, while the innermost shell
(Mv ∼M) peaks at tpeak, often dominating the total light curve unless heating rates
or opacities vary significantly with depth (e.g., due to free neutrons in outer layers).
As the ejecta expands, the radius of each mass layer evolves simply as:

dRv

dt
= v,

reflecting free expansion. The thermal energy δEv of a layer with mass δMv evolves
according to

d(δEv)
dt

= −δEv

Rv

dRv

dt
− Lv + Q̇, (2.14)

where the first term represents adiabatic losses due to expansion, Lv is the luminosity,
and Q̇ accounts for heating sources. The luminosity is given by,

Lv = δEv

td,v + tlc,v

, (2.15)

where tlc,v = Rv/c (the light-crossing time) ensures energy loss does not exceed phys-
ically realistic limits, particularly when the layer becomes optically thin. Heating
arises from multiple mechanisms

Q̇(t) = Q̇r,v + Q̇mag + Q̇fb, (2.16)

including radioactive decay (Q̇r,v), a millisecond magnetar (Q̇mag), or fallback accre-
tion (Q̇fb). For radioactive heating, the energy input is typically smaller than the
initial kinetic energy, allowing the initial power-law distribution to hold. However,
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significant energy contribution from a central engine restricts the free expansion. In
such cases, the innermost shell’s velocity v0 (mass M , energy Ev0) evolves as,

Mv0
dv0

dt
= Ev0

R0

dR0

dt
, (2.17)

where R0 is the inner shell’s radius, and the right-hand side balances adiabatic losses,
neglecting relativistic effects (at Mej ≲ 10−2 M⊙) or secondary shocks in outer layers
for simplicity. Assuming blackbody emission, the effective temperature is

Teff =
(

Ltot

4πσR2
ph

)1/4

, (2.18)

where Ltot =
∫

Lv
dMv

dv
dv sums the luminosity across all layers, and Rph is the pho-

tosphere radius, defined where optical depth τv = 1. The spectral flux density at
frequency ν is then given by,

Fν(t) = 2πhν3

c2
1

exp
(

hν
kTeff(t)

)
− 1

R2
ph(t)
D2 , (2.19)

where D is the distance to the source, and cosmological corrections are omitted for
simplicity.
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3Radiative Transfer
While an analytical toy model from Sec. 2.3 → p.12 offer valuable insights into the
basic physical principles governing kilonovae, they rely on simplifying assumptions
that limit their applicability to real events. In reality, modeling kilonovae poses
formidable challenges due to the intricate physics of their ejecta. The material
expelled during a neutron star merger is neither uniform nor spherically symmet-
ric, often comprising regions with diverse compositions—some rich in lanthanides
and actinides, others relatively free of these heavy elements. These compositional
variations lead to significant differences in opacity, influencing the radiation. Fur-
thermore, the ejecta expand rapidly, necessitating models that account for time-
dependent changes in density, temperature, and chemical makeup. To study the
observable signatures of kilonovae—such as spectra, light curves, and polarization—
radiative transfer simulations are important. These simulations trace the journey
of photons through the ejecta, bridging the gap between theoretical predictions and
observed data collected.

At the core of radiative transfer simulations is the radiative transfer equation (RTE),
which describes how photons interact with matter as they traverse,

dIν

ds
= jν − ανIν , (3.1)

where Iν is the specific intensity of radiation at frequency ν, jν is the emission coeffi-
cient, αν is the absorption coefficient, and s is the distance traveled by the photons.
Solving the RTE analytically is often impractical, particularly in optically thick
media or complex geometries, so numerical methods are employed. One approach
is the Monte Carlo method, which simulates the trajectories of many individual
photons or photon packets. It tracks their interactions—absorption, scattering, or
transmission—with the medium and uses a large sample to build a statistical pic-
ture of the radiation field. This method works well for three-dimensional setups and
frequency-dependent opacities but requires significant computational resources.

In this work, we primarily use the 3-dimensional Monte Carlo Radiative Transfer
(MCRT) code, POSSIS [64] and 1-dimensional models from SEDONA [35].

3.1 POSSIS
POSSIS is a radiative transfer code which leverages the Monte Carlo method as
its computational backbone, a probabilistic approach ideally suited to study the
radiation transport in kilonova ejecta. In this technique, the photon packets are
characterized by frequency, direction, and position, as they traverse through the
expanding medium. These packets originate from the thermal energy pool, driven
primarily by radioactive decay, undergoing scattering, absorption, or re-emission
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based on local physical conditions. By tracking individual photon histories, POSSIS
preserves the full complexity of the system, enabling detailed predictions of how
emission varies with viewing angles, time, and frequency.

The physical foundation of POSSIS begins with the ejecta model typically a 3-
dimensional grid from Numerical Relativity simulations, which describes the struc-
ture and evolution of the material expelled during the neutron star merger. This
geometry is setup in such that, we have a lanthanide rich component in the equato-
rial region and lanthanide free component around in the polar region.
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Figure 3.1: Cross-sectional view of the ejecta model used in POSSIS. The high-opacity, lanthanide-
rich material is concentrated around the equatorial region (merger plane) with a half-opening angle
Φ, while the polar region consists of low-opacity, lanthanide-free ejecta. The synthetic observables
(cf. Sec. 3.1.1 → p.17 ) are computed for various viewing angles Θobs. Image credit: Ref. [64]

A key assumption is homologous expansion, where the velocity of each ejecta element
scales linearly with its radial distance from the explosion’s center, expressed as
v ∝ r. This approximation reflects the rapid, free expansion following the merger’s
dynamical phase. As the ejecta expands, the density scales as,

ρij = ρi,0

(
t0

tj

)3

, (3.2)

where ρij is the density at grid cell i at time tj, ρi,0 is the initial density, t0 is the
initial time, and tj is the time step. The factor of 3 arises from the volumetric
expansion of the ejecta, directly influencing the optical depth and the timescales
over which radiation escapes. As already established in Sec. 2.2 → p.6 , the ejecta’s
composition is crucial, with lanthanides and actinides playing a significant role in
shaping the kilonova’s emission. POSSIS accounts for this by incorporating several
opacity sources, including bound-bound (lanthanide rich: Ye ≤ 0.25, lanthanide
free: Ye > 0.25), electron scattering, bound-free, and free-free opacities. Bound-
bound opacities, κbb, govern the interaction of radiation with spectral lines. Electron
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scattering opacity, κes, is critical for polarization calculations, while bound-free κbf
and free-free κff contribute to continuum absorption. Opacities may be specified at
each time step or interpolated from a reference time using an appropriate functional
form (based on atomic calculations from Ref. [142]), facilitating efficient modeling
of time-dependent spectra.

At each simulation time step, a predetermined number of photon packets is gener-
ated, each characterized by an initial position, propagation direction, energy, fre-
quency, and polarization state. The frequency of a packet is assigned by sampling
the thermal emissivity function,

S(ν) = B(ν, T )κtot(ν), (3.3)
where B(ν, T ) is the Planck function and κtot(ν) is the total opacity. The photon
packets propagate through the ejecta, interacting with the medium via absorption,
re-emission, and scattering processes. These interactions are computed in the co-
moving frame, with appropriate transformations applied to ensure proper treatment
of relativistic effects.

Photon packets travel through the ejecta until they reach the computational bound-
ary, where they are either absorbed, scattered, or allowed to escape. The propa-
gation path of each photon is determined probabilistically based on the mean free
path associated with the local opacity. In the case of electron scattering, the photon
direction is altered while its frequency remains unchanged. If absorption occurs, the
packet is re-emitted with a new frequency determined by the thermal emissivity.
This iterative process continues until all photon packets either escape the system or
are fully absorbed.

3.1.1 Synthetic Observables
To extract synthetic observables, POSSIS employs two complementary techniques:
the direct counting technique (DCT) and the event-based technique (EBT). In the
DCT approach, escaping photon packets are binned according to their final propaga-
tion directions to generate spectra and light curves. The EBT, in contrast, assigns
probabilities to virtual packets at each interaction site, weighting them according to
their likelihood of reaching the observer. This method significantly reduces Monte
Carlo noise and improves the accuracy of polarization predictions.

The synthetic observables generated by POSSIS include spectral energy distribu-
tions (SEDs), broadband light curves, and polarization spectra. The SEDs provide
wavelength-dependent flux predictions at different epochs and viewing angles, re-
vealing the interaction between the ejecta’s composition and its radiative properties.
Broadband light curves, computed in various photometric filters, enable direct com-
parisons with observational data from transient surveys. Polarization spectra further
constrain ejecta asymmetries by quantifying the anisotropic scattering of photons.

Broadband light curves exhibit significant viewing-angle dependence, reflecting the
asymmetric nature of the ejecta. When viewed along the polar axis, the light curves
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appear brighter and decay more rapidly, whereas equatorial views lead to fainter,
longer-lasting emission due to increased opacity from lanthanide-rich material. This
anisotropy is particularly pronounced in kilonovae, where distinct ejecta components
contribute differently across various wavelengths. The analysis of broadband light
curves allows for the inference of key parameters such as the total ejecta mass,
lanthanide fraction, and inclination angle relative to the observer.
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Figure 3.2: Fiducial light curve for a kilonova event generated by POSSIS. Color bar shows 11
observing angles ranging from cos Θobs = 0 (equatorial) to 1 (polar). The light curves exhibit
significant viewing-angle dependence, with polar views showing brighter, longer-lasting emission
compared to equatorial views. Each subpanel shows the difference between the light curve observed
at that angle and polar angle. Open circles represents the kilonova AT2017gfo corrected for Milky
Way extinction. Image credit: Ref. [64]

3.2 SEDONA
Although SEDONA is a 3D code, in this thesis, we focus on a grid of one-dimensional
spherically symmetric models presented in Ref. [35]. This model is parameterized
by the ejecta total mass Mej, average velocity vej, and lanthanide fraction Xlan. The
bulk of the freely expanding ejecta is determined by the ejecta mass Mej. The
density profile of the ejecta is described using a broken power-law that transits
from the gradually declining interior with vejt/r to the steeply dropping outer layer
with (vejt/r)10. Finally, the lanthanide fraction Xlan influences the opacity and
color evolution of the kilonova, where larger lanthanide fractions result in increased
opacity and longer-duration emissions shifted towards the infrared.
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The energy source powering the kilonova emission is the radioactive decay of r-
process nuclei synthesized during the merger. The heating rate follows a power-law
which is very similar to the on defined in Eq. (2.6) → p.11 , ε̇nuc ∝ t−1.3, due to the
wide distribution of half-lives of these freshly formed isotopes. Consequently, the
radiation escapes once the diffusion timescale becomes comparable to the expan-
sion time, and the time-dependent luminosity is primarily governed by the product
κM/v, where κ is the opacity. This opacity is highly sensitive to the composition—
lanthanide-rich ejecta have significantly higher opacities (up to ∼10 cm2 g−1) than
lanthanide-poor material (<1 cm2 g−1), due to the dense forest of line transitions
from f-shell electrons in heavy elements.

As a result, low-Xlan (≤ 10−4) material emits briefly and in the optical (a “blue”
kilonova), while high-Xlan (≥ 10−2) ejecta lead to longer, redder, infrared-dominated
emission (a “red” kilonova). In AT2017gfo, both components are observed, the early-
time optical light is attributed to fast (∼ 0.3c), lanthanide-poor ejecta likely from
polar shock-driven outflows; the longer infrared tail arises from slower (∼ 0.1−0.2c),
lanthanide-rich material, possibly originating from disk winds or tidal ejecta.
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4Statistical Methods
Repeated observations of astronomical phenomena are often characterized by com-
plex, noisy data that require sophisticated statistical techniques for their analysis.
In this chapter, we introduce the fundamental concepts of probability theory and
Bayesian statistics, which form the basis of our approach to parameter estimation
and model comparison in multi-messenger astronomy. We also discuss the computa-
tional techniques required for practical Bayesian inference in complex astrophysical
problems.

4.1 Bayesian Statistics

4.1.1 Probability Theory
Probability theory forms the mathematical backbone of statistical inference. A prob-
ability distribution describes how probability mass or density is assigned to possible
values of a random variable. For a discrete random variable X, the probability of
an event A occurring is given by,

P (A) =
∑

i

P (Ai), (4.1)

where Ai are mutually exclusive outcomes. For a continuous variable θ, the proba-
bility density function (PDF) is given by,

P (A) =
∫

A
p(θ)dθ. (4.2)

One of the fundamental properties of probability theory is the law of total probability,
which states that for any partition Bi of the sample space, the probability of an event
A is given by,

P (A) =
∑

i

P (A|Bi)P (Bi). (4.3)

Another key principle is conditional probability, which quantifies the probability of
an event A given that another event B has occurred, given by

P (A|B) = P (A ∩B)
P (B)

. (4.4)

In the context of astrophysical inference, we are often interested in estimating the
parameters θ of a model, given some observed data D. The interpretation of prob-
ability in such problems can be broadly categorized into two perspectives:
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• Frequentist Interpretation: Probability is defined as the long-run relative
frequency of an event in repeated trials. This approach underlies classical statis-
tical methods, including confidence intervals and hypothesis testing, but does
not incorporate prior knowledge in parameter estimation.

• Bayesian interpretation: Probability represents a degree of belief in an event,
updated as new evidence is obtained. This approach allows for the incorporation
of prior information through Bayes’ theorem, making it particularly suited for
problems where data are limited or where prior knowledge is available.

In astrophysical applications, particularly in transient event analysis, the frequen-
tist approach is often inadequate because no two astronomical events are strictly
identical. Consequently, Bayesian inference, which systematically updates prior
knowledge with new observations, provides a more robust framework for parameter
estimation in such scenarios.

4.1.2 Bayes’ Theorem
Bayes’ theorem is derived directly from the definition of conditional probability. For
two events A and B, Eq. (4.4) → p.20 can be rewritten as

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A), (4.5)

which can be rearranged to yield Bayes’ theorem as follows,

P (A|B) = P (B|A)P (A)
P (B)

, (4.6)

where each term carries a specific statistical interpretation. The prior probability,
P (A), quantifies the initial probability of event A based on pre-existing information
or assumptions, established prior to observing the specific event. The likelihood,
P (B|A) quantifies the probability of observing data B given that the hypothesis
A is true. The posterior probability, P (B|A) is the updated probability of A after
accounting for the data B. The evidence, or marginal likelihood, P (B), acts as a
normalization factor, ensuring that the posterior is a valid probability distribution.
For discrete hypothesis, it is calculated as

P (B) =
∑

i

P (B|Ai)P (Ai), (4.7)

summing over all possible states Ai and for continuous hypothesis, it is given by

P (B) =
∫

P (B|θ)P (θ)dθ, (4.8)

where θ denotes the parameter vector and the integral spans the prior distribution.

This is the fundamental form of Bayes’ theorem, which allows the inversion of con-
ditional probabilities based on prior knowledge. The real power of Bayes’ theorem
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lies in its systematic way to update our beliefs about a parameter as more data
become available. This makes it particularly powerful in astrophysical applications,
where observations are often sequentially obtained over time, such as in the case of
transient events.

4.1.3 Parameter Estimation
To perform parameter estimation in a Bayesian framework, we seek to infer the
posterior distribution of the model parameters θ⃗ given the observed data d under
the assumption of some hypothesis H. This is achieved by combining the likelihood
function, which quantifies the probability of observing the data given the model
parameters, with the prior distribution, which encodes our prior knowledge about
the parameters. To this end, Bayes’ theorem takes the form

P (θ⃗|d,H) = P (d|θ⃗,H)P (θ⃗|H)
P (d|H)

, (4.9)

or more familiarly as

P (θ⃗|d,H) = L(θ⃗)π(θ⃗|H)
Z

, (4.10)

and the evidence is given by

Z =
∫

Ω
θ⃗

L(θ⃗)π(θ⃗|H)dθ⃗, (4.11)

where integration is performed over the entire parameter space Ωθ⃗.

In this context, the hypothesis H represents the underlying model or theoretical
framework that we assume to be true when performing our analysis. It encapsulates
our fundamental assumptions about the system under study and defines the space of
possible parameter values θ⃗ that can describe the data. For instance, in astronomi-
cal observations, H might represent the hypothesis that Newton’s law of gravitation
correctly describes the motion of celestial bodies, or alternatively, that Einstein’s
theory of general relativity is the correct framework. The explicit conditioning on
H throughout the equations reminds us that all our inferences about parameters
θ⃗ are conditional on the validity of the underlying model. The posterior distribu-
tion P (θ⃗|d,H) provides the probability of different parameter values given both the
observed data and our assumed model. Similarly, the prior P (θ⃗|H) encodes our
beliefs about parameter values within the context of hypothesis H before observing
any data. The evidence, cf. Eq. (4.11) → p.22 , also known as the marginal likelihood,
quantifies how well the hypothesis H explains the observed data, averaged over all
possible parameter values weighted by their prior probabilities.

4.1.4 Hypothesis Testing
In Bayesian hypothesis testing, we extend the framework of parameter estimation
to evaluate the relative plausibility of competing hypotheses given observed data.
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Unlike parameter estimation, where we infer the distribution of parameters within a
single model, hypothesis testing involves comparing multiple models or hypotheses
to determine which one provides a better explanation for the observed phenomena.

Consider two competing hypotheses, H1 and H2, each representing different mod-
els or theoretical frameworks. Eq. (4.9) → p.22 can be transformed to represent the
posterior probability of hypothesis Hi given the data d as follows

P (Hi|d) = P (d|Hi)P (Hi)
P (d)

, (4.12)

where P (d|Hi) is the evidence for hypothesis Hi, P (Hi) is the prior probability
assigned to hypothesisHi before observing the data, and P (d) is the total probability
of observing the data across all possible hypotheses.

The ratio of posterior probabilities for two competing hypotheses, known as the
posterior odds or odds ratio, provides a direct measure of their relative plausibility

P (H1|d)
P (H2|d)

= P (d|H1)
P (d|H2)

· P (H1)
P (H2)

. (4.13)

The first term on the right-hand side is the Bayes factor, denoted as B1
2, which

quantifies the relative evidence provided by the data in favor of H1 over H2

B1
2 = P (d|H1)

P (d|H2)
= Z1

Z2
, (4.14)

where Zi represents the evidence for hypothesis Hi as defined in Eq. (4.11) → p.22 .
The second term in Eq. (4.13) → p.23 is the prior odds, which represents the relative
plausibility of the hypotheses before observing the data,

Π1
2 = P (H1)

P (H2)
. (4.15)

With Eq. (4.14) → p.23 and Eq. (4.15) → p.23 , the odds ratio can be expressed as,

O1
2 = B1

2Π1
2, (4.16)

In practical applications, the prior odds are often set to unity under the assumption
that both hypotheses are equally likely, hence the posterior odds are same as the
Bayes factor.

The Bayes factor B1
2 provides an objective measure of the strength of evidence in

the data, independent of prior beliefs about the hypotheses.

When the Bayes factor B1
2 > 1, the data provides evidence in favor of H1 over

H2, with larger values indicating stronger evidence. Conversely, when B1
2 < 1, the
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data supports H2 over H1. The magnitude of the Bayes factor can be interpreted
according to established scales, with values above 10 typically considered strong
evidence and values above 100 decisive evidence.

For nested models, where hypothesis H1 represents a more general model that in-
cludes H2 as a special case, the Bayes factor automatically implements Occam’s
razor by penalizing unnecessary complexity. If the additional parameters in H1 do
not significantly improve the fit to the data, the evidence will favor the simpler
model H2, as expressed by

B1
2 =

∫
Ω

θ⃗1
P (d|θ⃗1,H1)π(θ⃗1|H1)dθ⃗1∫

Ω
θ⃗2

P (d|θ⃗2,H2)π(θ⃗2|H2)dθ⃗2
. (4.17)

When dealing with multiple hypotheses {H1,H2, . . . ,Hn}, we can compute the pos-
terior probability of each hypothesis as

P (Hi|d) = P (d|Hi)∑n
j=1 P (d|Hj)

. (4.18)

This formulation allows for a coherent assessment of the relative plausibility of all
competing hypotheses simultaneously, rather than through pairwise comparisons
alone.

4.2 Computational Methods
The Bayesian approach to parameter estimation and hypothesis testing, while the-
oretically elegant, presents significant computational challenges in practical appli-
cations. In particular, evaluating the posterior distribution, cf. Eq. (4.10) → p.22 , re-
quires computing the multidimensional integral Eq. (4.11) → p.22 for the evidence Z.
For all but the simplest problems with analytic solutions, this integral is intractable
using traditional numerical integration methods, especially as the dimensionality of
the parameter space increases—a phenomenon known as the ”curse of dimensional-
ity”.

In astrophysical applications, we typically encounter complex likelihood functions
that may be multimodal, exhibit strong parameter degeneracies, or contain sharp
peaks in high-dimensional spaces. For instance, in multi-messenger astronomy, the
joint analysis of gravitational wave and electromagnetic signals involves parameter
spaces with dimensions often exceeding 10-15 parameters. Direct numerical integra-
tion in such spaces would require an exponentially increasing number of function
evaluations that quickly becomes computationally expensive, more often than not,
prohibitive.

Consequently, stochastic sampling methods have emerged as the preferred approach
for Bayesian computation for astrophysical problems. These methods approximate
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the posterior distribution by drawing samples from it, without requiring the ex-
plicit calculation of the normalizing evidence. The generated samples can then be
used to estimate parameter values, construct credible intervals, and compute quan-
tities of interest. Additionally, some sampling methods provide estimates of the
evidence Z, enabling rigorous model comparison through Bayes factors as described
in Eq. (4.14) → p.23 .

In the following texts, we discuss two principal sampling techniques that have proven
particularly effective for astronomical applications: Markov Chain Monte Carlo
(MCMC) methods, which excel at efficiently exploring posterior distributions for
parameter estimation, and nested sampling, which was specifically designed to com-
pute the evidence while simultaneously providing posterior samples.

4.2.1 Markov Chain Monte Carlo
MCMC methods constitute a class of algorithms designed to draw samples from a
probability distribution by constructing a Markov chain whose equilibrium distri-
bution converges to the target posterior distribution. The fundamental principle
underlying MCMC is that, after an initial ”burn-in” period, the states of the chain
represent correlated samples from the posterior distribution, which can be used to
estimate any quantity of interest.

The Metropolis-Hastings algorithm [144,145], a canonical MCMC method, gen-
erates samples from the posterior distribution, P (θ⃗|d,H), through the following
procedure:

Algorithm 1: Metropolis-Hastings Algorithm
1 Initialize the chain at position θ⃗0 in parameter space.
2 for each iteration t do
3 Propose a new position θ⃗′ according to a proposal distribution q(θ⃗′|θ⃗t)

Compute the acceptance ratio:

α = min

1,
P (θ⃗′|d,H)
P (θ⃗t|d,H)

q(θ⃗t|θ⃗′)
q(θ⃗′|θ⃗t)

 (4.19)

Draw u ∼ U(0, 1) if u < α then
4 Set θ⃗t+1 = θ⃗′

5 else
6 Set θ⃗t+1 = θ⃗t

7 end if
8 end for

For symmetric proposal distributions, where q(θ⃗′|θ⃗t) = q(θ⃗t|θ⃗′), this simplifies to the
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Metropolis algorithm with acceptance ratio,

α = min

1,
P (θ⃗′|d,H)
P (θ⃗t|d,H)

. (4.20)

A crucial aspect of the Metropolis-Hastings algorithm is that it only requires eval-
uating the posterior up to a normalizing constant, as the ratio in Eq. (4.20) → p.26

cancels out the evidence term Z

P (θ⃗′|d,H)
P (θ⃗t|d,H)

= L(θ⃗′)π(θ⃗′|H)
L(θ⃗t)π(θ⃗t|H)

. (4.21)

While conceptually straightforward, the practical performance of MCMC methods
depends critically on the choice of proposal distribution. Proposals that are too
conservative (small step sizes) result in high acceptance rates but slow exploration of
the parameter space, whereas proposals that are too ambitious (large step sizes) lead
to many rejections and inefficient sampling. This challenge is especially pronounced
in high-dimensional spaces with strong parameter correlations, which are common
in astrophysical applications.

A critical aspect of MCMC implementation is the handling of burn-in samples. Since
the Markov chain typically starts from an arbitrary position in parameter space, the
initial samples do not accurately represent the target posterior distribution. These
early iterations, known as the burn-in phase, must be discarded to ensure that only
samples from the converged stationary distribution are used for inference. Formally,
if B represents the number of burn-in iterations, the samples used for analysis are
θ⃗B+1, θ⃗B+2, . . . , θ⃗N .

The primary output of MCMC methods, after discarding burn-in samples, is a set
of samples that approximates the posterior distribution. From these samples, we
can estimate moments, compute credible intervals, and construct marginal posterior
distributions. The posterior mean for each parameter θi is estimated as,

θ̄i = 1
N

N∑
j=1

θi,j. (4.22)

Similarly, the posterior covariance between parameters θi and θj is estimated as,

Cov(θi, θj) = 1
N − 1

N∑
k=1

(θi,k − θ̄i)(θj,k − θ̄j). (4.23)

4.2.2 Nested Sampling
While MCMC methods are well-suited for exploring the posterior distribution for
parameter estimation, they are less efficient at computing the evidence Z, which is



Chapter 4. Statistical Methods 27

Step

θ

P (θ|D)

Burn-in samples Post-burn-in samples Burn-in cutoff

Figure 4.1: Trace plot showing the MCMC burn-in and post burn-in samples. The initial burn-in
phase (red) exhibits erratic behavior before the chain converges to a steady state. The burn-in
cutoff (black dashed line) marks the transition to the post burn-in phase (blue), where the samples
are representative of the posterior distribution P (θ|D).

essential for model comparison. nested sampling, introduced by Skilling [146], is
a computational method specifically designed to efficiently calculate the evidence
Z while simultaneously generating samples from the posterior distribution. Unlike
MCMC methods, which focus primarily on exploring the posterior, nested sampling
deliberately targets the evidence integral in Equation (4.11). The key idea of nested
sampling is to transform the multidimensional evidence integral over parameter
space, Ωθ⃗, into a one-dimensional integral over the prior volume. We define the
prior volume X(λ) as the fraction of prior volume enclosed by the iso-likelihood
contour L(θ⃗) = λ,

X(λ) =
∫

{θ⃗:L(θ⃗)>λ}
π(θ⃗|H)dθ⃗. (4.24)

As λ increases from 0 to the maximum likelihood value, X(λ) decreases monotoni-
cally from 1 to 0. This allows us to rewrite the evidence integral as a one-dimensional
integral over the prior volume,

Z =
∫ 1

0
L(X)dX, (4.25)

where L(X) is the inverse function of X(λ), representing the likelihood value that
corresponds to prior volume X.

Stopping Criterion

Since nested sampling proceeds by iteratively removing the point with the lowest
likelihood and replacing it with a new sample, the algorithm must determine when
to terminate. A common stopping criterion is based on the remaining prior vol-
ume contributing negligibly to the evidence estimate. Specifically, the algorithm
terminates when the change in evidence between successive iterations falls below a
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Algorithm 2: Nested Sampling Algorithm
1 Initialize N live points {θ⃗i}N

i=1 sampled from the prior π(θ⃗).
2 i← 0
3 while termination criterion not met do
4 Compute the likelihoods Li = L(θ⃗i) for all live points
5 Identify the point θ⃗min with the lowest likelihood Li = L(θ⃗min) among

the live points
6 Remove θ⃗min from the set of live points and save it as a dead point
7 Generate a new live point θ⃗new from the prior distribution, subject to

the constraint L(θ⃗new) > Li

8 Compute termination criterion ∆Ẑi

9 i← i + 1
10 end while

specified threshold. At a given iteration i we compute an estimate Ẑi of the ac-
cumulated evidence and compare it with the remaining evidence ∆Ẑi. However,
this remaining evidence is unknown, but one can put strict upper bounds on it by
considering the maximum likelihood ever encountered in the entire parameter space
and the remaining prior volume Xi. Under this assumption, the remaining evidence
can be bounded as,

∆Ẑi ≤ LmaxXi. (4.26)

With this bound, the stopping criterion can be expressed as the log ratio of evidences,

∆Ẑi ≡ ln
(

Ẑi + LmaxXi

Ẑi

)
< ε. (4.27)
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Figure 4.2: Illustration of the nested sampling algorithm in a two-dimensional parameter space
θ ∈ {θ1, θ2}. Nested sampling progressively explores regions of higher likelihood, moving from
points X1 to X4. The algorithm accumulates evidence by summing the product of likelihood
values and change in prior volume, Z =

∑
L∆X, integrating over the posterior distribution.

Image credit: [147].
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Evidence and Posterior

Once the nested sampling algorithm terminates, we can estimate the evidence Z by
integrating the likelihood values of the removed dead points weighted by the change
in prior volume,

Z =
∫ 1

0
L̂(X)dX. (4.28)

Since, the entire discussion is based on how unfeasible it is to compute the integral,
we can approximate the integral using the trapezoidal sum as follows,

Z ≈ 1
2

N∑
i=1

(Li−1 + Li)(Xi−1 −Xi)

≡
N∑

i=1
wi.

(4.29)

The posterior distribution can be estimated from the dead points by weighing each
sample by the importance weight pi,

pi = wi∑N
i=1 wi

. (4.30)
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5Nuclear-Physics and
Multi-Messenger Astrophysics
Building upon the foundations established in the preceding chapters, we have de-
veloped a comprehensive understanding of the physical mechanisms governing BNS
mergers, the EM signatures they produce, and the statistical frameworks required
to extract meaningful constraints from observational data.

All of these components converge in the NMMA framework, which serves as an ad-
vanced Bayesian inference tool for the simultaneous analysis of gravitational wave
signals, kilonova light curves, and other multi-messenger data. NMMA synthesizes in-
formation from different observational channels while incorporating nuclear-physics
constraints and gravitational wave data to provide a self-consistent framework for
understanding BNS mergers.

5.1 Overview
The NMMA framework is designed to address several fundamental problems in neu-
tron star astrophysics. The equation of state (EOS) of neutron star matter remains
one of the central unresolved questions, as it governs the internal structure and
dynamics of these compact objects. Constraints on the EOS can be obtained from
gravitational-wave observations of the tidal deformations experienced by neutron
stars during inspiral, from X-ray and radio measurements of pulsars, and from nu-
clear theory calculations. Similarly, the properties of BNS and neutron star-black
hole (NSBH) mergers, including their ejecta masses, velocities, and composition can
be constrained by analyzing the EM signals emitted following the merger. Addition-
ally, multi-messenger observations of neutron star mergers provide an independent
means of measuring the Hubble constant, thus offering a novel probe of cosmol-
ogy. The NMMA framework integrates all of these constraints into a unified inference
pipeline, ensuring that information from different messengers is combined in a sta-
tistically rigorous manner.

At its core, NMMA is based on Bayesian inference (through BILBY [148,149]), al-
lowing for a consistent incorporation of prior knowledge, observational data and
physical measurements to estimate posterior probability distributions of physical
parameters. The framework primarily uses nested sampling to efficiently explore
the high-dimensional parameter space of BNS mergers. The likelihood function
within NMMA is constructed as a product of the likelihoods associated with different
observational channels: gravitational waves, kilonova light curves, and, when avail-
able, GRB afterglows. This multi-component likelihood function enables NMMA to
leverage all available information to obtain more precise constraints on neutron star
properties and merger physics.
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5.1.1 Nuclear Physics Constraints
NMMA incorporates nuclear physics constraints into the inference process to ensure
that the derived properties of neutron stars and their mergers are physically consis-
tent with our understanding of dense nuclear matter. The EOS of neutron star mat-
ter, is a critical component that influences both gravitational wave signals through
tidal deformabilities and kilonova emission through the properties of merger ejecta.
The framework employs a two-region approach to model the EOS. At low densi-
ties (up to approximately 2nsat, where nsat = 0.16 fm−3 is the nuclear saturation
density), NMMA utilizes Quantum Monte Carlo calculations based on Chiral Effec-
tive Field Theory (EFT), providing a systematic description of nuclear interactions
with quantifiable uncertainties. For the higher densities reached in neutron star
cores, where Chiral EFT becomes unreliable, NMMA implements a model independent
speed-of-sound extension scheme bounded only by causality (cs ≤ c) and mechanical
stability (cs ≥ 0).1

This methodology allows NMMA to generate EOS realizations that are consistent with
known nuclear physics while adequately exploring uncertainties at high densities.
For each sampled EOS, the framework solves the TOV equations to determine neu-
tron star properties such as the mass-radius relationship and tidal deformabilities,
which directly influence observable gravitational wave and EM signatures.

5.1.2 Gravitational Waves
Gravitational-wave data play a fundamental role in NMMA’s inference pipeline. The
inspiral phase of a BNS merger encodes crucial information about the component
masses and tidal deformabilities, which in turn provide constraints on the EOS. To
extract this information, NMMA utilizes various waveform models from LALSuite [152].
The likelihood function for gravitational-wave data is computed by cross-correlating
the observed detector strain with theoretical waveform templates, weighted by the
detector’s noise power spectral density. The likelihood LGW for gravitational wave
data, given a set of parameters θ, is defined as,

LGW ∝ exp
(
−1

2
⟨d− h(θ) | d− h(θ)⟩

)
, (5.1)

where d is the detector strain data, h(θ) is the GW signal generated from parameters
θ, and ⟨· | ·⟩ is the inner product defined as,

⟨a | b⟩ = 4 Re
∫ fmax

fmin

ã(f)b̃∗(f)
Sn(f)

df, (5.2)

where ã(f) and b̃(f) are the Fourier transforms of a(t) and b(t), respectively, Sn(f)
is the one-sided noise power spectral density of the noise, and ∗ is the complex

1Refer to Ch. 6.2.1 → p.76 and Ch. 9.2.1 → p.122 of Ref. [150] and Sec. Methods → p.6 of
Ref. [151] for a detailed discussion.

https://research-portal.uu.nl/en/publications/from-spacetime-to-nucleus-probing-nuclear-physics-and-testing-gen
https://research-portal.uu.nl/en/publications/from-spacetime-to-nucleus-probing-nuclear-physics-and-testing-gen
https://www.nature.com/articles/s41467-023-43932-6


Chapter 5. Nuclear-Physics and Multi-Messenger Astrophysics 32

conjugate. The integration limits fmin and fmax are chosen to match the frequency
range of the signal.

5.1.3 Kilonovae and Gamma-Ray Bursts
Beyond gravitational waves, NMMA incorporates EM data from kilonovae and GRB
afterglows to further constrain the properties of neutron star mergers. To model
kilonovae, NMMA primarily employs POSSIS. Additionally, NMMA models the GRB
afterglows using afterglowpy [153,154], a semi-analytic code that simulates the
synchrotron emission from relativistic jets produced in neutron star mergers. The
likelihood LEM for kilonova and GRB can be combined as a single EM likelihood,
given a set of parameters θ as

LEM ∝ exp

−1
2
∑
ij

(
mj

i −mj, est
i (θ⃗)

)2

(
σj

i

)2
+ (σsys)2

, (5.3)

where mj
i is the AB magnitude in filter j at time i with the corresponding mea-

surement error σj
i ≡ σj(ti), mj, est

i (θ⃗) is the estimated AB magnitude for the source
parameters θ⃗ (e.g., ejecta masses, velocities) from the model and σsys is the additional
uncertainty to account for systematic errors in the kilonova and afterglow modelling.
Computing likelihood in this form is equivalent to including an additional shift to
the light curve by ∆m, and marginalizing it with a normal distribution with a mean
of 0 and variance σsys.

Using Eq. (5.1) → p.31 and Eq. (5.3) → p.32 , NMMA combines GW and EM to obtain a
joint likelihood function,

L = LGW × LEM, (5.4)
in order to capture the full multi-messenger picture.

5.1.4 Measurements from Isolated Neutron Stars
While the primary focus of NMMA is on BNS and NSBH mergers, the framework also
incorporates information from isolated neutron stars to further constrain the EOS
and priors on neutron star properties. This information includes measurements of
neutron star masses and radii from NICER X-ray observations, as well as radio
pulsar timing data.2

5.2 Surrogate Modelling
Radiative transfer simulations, such as those performed by POSSIS and SEDONA (here-
after referred to interchangeably as Bu2019lm and Ka2017, respectively, in order

2Refer to Ch. 6.2.3 → p.77 and Ch. 8 → p.109 of Ref. [150], Sec. Methods → p.6 of Ref. [151], and
Ref. [155] for a detailed discussion.

https://research-portal.uu.nl/en/publications/from-spacetime-to-nucleus-probing-nuclear-physics-and-testing-gen
https://research-portal.uu.nl/en/publications/from-spacetime-to-nucleus-probing-nuclear-physics-and-testing-gen
https://www.nature.com/articles/s41467-023-43932-6
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to be coherent with their names within the NMMA community), are computationally
expensive, making them impractical to run repeatedly for any arbitrary set of pa-
rameters during the Bayesian inference sampling. To address this challenge, NMMA
employ surrogate models [156] that efficiently interpolates between pre-computed
simulation grids in order to reduce the memory footprint and overall computational
cost of the inference process. To this end, NMMA employs two step approach, first re-
ducing the dimensionality of the data using singular value decomposition (SVD), and
then training a surrogate model either using Gaussian Process Regression (GPR) or
Neural Network (NN) to interpolate between the reduced data points.

5.2.1 Dimensionality Reduction
While one can directly train a machine learning model on the observables, it is much
efficient to first perform some kind of dimensionality reduction in order to get a more
compact representation of the data. This is achieved using SVD. For a given set of
light curves Lj, generated from a set of parameters θj, the full light curve matrix is
represented as Lj

i ≡ [Li(θj)], where i indexes the time steps of the light curve. The
singular value decomposition of Lj

i is performed first by normalizing the light curves
using MinMax Normalisation and then decomposing the matrix as

L = V ΣU⊤, (5.5)

where U are the left singular vectors, Σ is the diagonal matrix of singular values,
and V are the right singular vectors. With these new basis vectors, the original light
curve L can be projected onto the left singular vectors

sk(θj) = V ⊤
ki Li(θj), (5.6)

where sk(θj) are the weights of the principal components of the input light curve
matrix Lj

i . In general, this allows for a more compact representation of the light
curves, such that, in NMMA only first 10 basis vectors are enough to capture the
majority of the information in the light curves.

5.2.2 Interpolation Methods
Once the dimensionality of the data has been reduced, the next step is to train a
surrogate model that can interpolate between the pre-computed simulation grids.
However, in cases such as, the requested time interval is larger than the original
data, a simpler linear interpolation is used.

5.2.2.1 Gaussian Process Regression

GPR provides a non-parametric method for estimating smooth functions while in-
corporating uncertainty quantification. A Gaussian process is defined by a mean
function m(θ) and a covariance function k(θ, θ′), such that the function values at
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any set of points θ are jointly Gaussian distributed such that the coefficients sk can
be represented as

sk(θ) ∼ GP(m(θ), k(θ, θ′)). (5.7)

Consequently, the coefficients sk are then interpolated with a rational-quadratic
kernel [157]

k(θ⃗, θ⃗′) =

1 + |θ⃗ − θ⃗′|2

2αl2

−α

, (5.8)

where θ⃗ and θ⃗′ are vectors of input parameters and hyperparameters α and l are
chosen by maximizing the evidence for the data under a zero-mean Gaussian pro-
cess. Post interpolation, the full light curve can be reconstructed by projected the
interpolated coefficients back onto the original basis vectors

Li(θj) = Viksk(θj). (5.9)

NMMA uses scikit-learn [158] to implement the GPR interpolation.

5.2.2.2 Neural Networks

Following Ref. [159], NMMA has implemented a NN based interpolation method to
reduce memory consumption and accelerate inference compared to the GPR imple-
mentation. The primary advantage of this approach is its ability to efficiently handle
high-dimensional kilonova models as opposed to GPR, which tends to breakdown
with more than 4 model parameters.3

Similar to GPR, the NN is trained on a reduced set of data points and then used to
interpolate between them. The neural network follows a feed-forward architecture
implemented using TensorFlow [160] with Adam optimizer [161], a mean squared
error loss function and Rectified linear unit (ReLU) [162] activation function. Once
trained, the NN can rapidly generate interpolated values across the parameter space,
significantly reducing the computational cost associated with traditional interpola-
tion methods. Similar to the GPR approach, the full light curve can be reconstructed
by performing inverse transformations on the interpolated coefficients.

The specific architecture, hyperparameter choices, and further implementation de-
tails of the neural networks used in this work are discussed below.

POSSIS

The NN surrogate model is trained on 1596 parameter combinations and their corre-
sponding light curves generated from the POSSIS simulation. The NN architecture
consists of three fully connected hidden layers with 128, 256, and 128 neurons, re-
spectively. The input layer has neurons corresponding the total number model
parameters (Φ, ι, log10 Mwind

ej and log10 Mdyn
ej , cf. Sec. 3.1 → p.15 ). The output layer

3Refer Ref. [159] for a detailed discussion on NN accelerated kilonova surrogate modeling.
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consists of neurons corresponding to the number of principal components, which
is set to 10 in our case. The model is trained for 100 epochs with a batch size of
128, using a learning rate of 10−3. To ensure numerical stability and consistency in
the output range, output is rescaled using a MinMax scaler, which normalizes them
to a fixed range before applying the inverse transformation to reconstruct the light
curves. Additionally, 20% of the dataset is set aside for validation to monitor the
model’s generalization performance and prevent overfitting.

SEDONA

The total number of publicly available4 light curves for SEDONA is relatively small,
comprising only 329 parameter combinations. Despite the limited dataset, the pre-
training steps remain the same as those used for POSSIS. However, due to the reduced
data volume, a different neural network architecture is adopted.

Here we used a single hidden layer of 2048 neurons, with input a layer of three
neurons corresponding to the model parameters (log10 vej, log10 Mej, and log10 Xlan,
cf. Sec. 3.2 → p.18 ). As in the case of POSSIS, the output layer consists of 10 neurons,
corresponding to the number of principal components used to reduce the dimen-
sionality of the light curves. To improve generalization and mitigate overfitting, a
dropout layer with a rate of 0.6 is included during training.

5.2.3 Neural Network Benchmarking
Since the two radiative transfer models, POSSIS and SEDONA, have fundamentally
different geometries and are trained on distinct datasets, their corresponding NN
surrogate models are also distinct. This difference implies that the performance of
the two models should not be directly compared without careful consideration of
their respective training datasets and methodologies.

To assess the accuracy of the NN surrogate models, we use the root mean square
error (RMSE) as a metric to quantify the average deviation between the predicted
and actual light curves. The RMSE is defined as

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, (5.10)

where yi is the actual value obtained through the radiative-transfer simulation at
time ti, ŷi denotes the prediction from the surrogate model, and N is the total
number of time points.

We compute this metric across the entire parameter grid and all photometric filters.
The median RMSE values are found to be 0.103 mag for Bu2019lm (computed over
a 14-day period) and 0.485 mag for Ka2017 (computed over a 7-day period). The
rationale behind selecting these specific time intervals will be discussed in the next
sections.

4 https://github.com/dnkasen/Kasen_Kilonova_Models_2017

https://github.com/dnkasen/Kasen_Kilonova_Models_2017
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Figure 5.1: Median RMSE values across different photometric filters for the two neural network
surrogate models: Ka2017 (red, right y-axis) and Bu2019lm (blue, left y-axis). Individual box
plot represent the median (center-notch), interquartile range (box), and 1.5 times the interquartile
range (whiskers) of the RMSE values. Dashed line represents the median RMSE value across entire
parameter grid and photometric filters. The Bu2019lm model exhibits lower RMSE values across
all filters, indicating better agreement with the radiative transfer simulations. The Ka2017 model
exhibits consistently higher RMSE values across all filters, reflecting greater deviations from the
radiative transfer simulations. The disparity between the two models underscores differences in
their training datasets, methodologies, and underlying physics. Note: Extreme outliers are not
shown for clarity.
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6Systematic Uncertainties
Parts of this chapter are based on the article Data-driven approach for mod-
eling the temporal and spectral evolution of kilonova systematic uncer-
tainties by Sahil Jhawar, Thibeau Wouters, Peter T. H. Pang, Mattia Bulla,
Michael W. Coughlin, and Tim Dietrich published in Physical Review D, Volume
111, Issue 4, February 2025.
Despite the robustness of NMMA’s inference methodology, one of the key challenges
in kilonova modeling is the presence of uncertainties, which arise from factors
such as nuclear heating rates, opacities, and ejecta morphology, cf. Ch. 2 → p.4 ,
all of which evolve over time. Historically, the NMMA [151] framework has ad-
dressed these uncertainties by applying a fixed systematic uncertainty of 1 mag-
nitude [19,41,151,163], a choice validated by studies demonstrating consistency
across different ejecta morphologies [67]. However, assuming a fixed uncertainty
in the kilonova likelihood function (σsys in Eq. (5.3) → p.32 ) can lead to biases in
parameter estimation.

More recent approaches have sought to refine this treatment by allowing systematic
uncertainty to be sampled as a free parameter [3,164]1, with some works incorpo-
rating filter-dependent priors [165]. However, systematic uncertainty in kilonova
models is not solely filter-dependent but also evolves over time, reflecting changes
in opacity descriptions at early epochs [74,142] and non-local thermal equilibrium
effects that become significant after about one week [166,167]. To address this
limitation, this thesis and the corresponding paper introduce a time-dependent error
model, which accounts for variations in kilonova properties across different observa-
tional epochs. Additionally, the methodology allows for a combined treatment of
filter- and time-dependent uncertainties, providing a more nuanced representation
of systematic effects. Additionally, we also the treatment of systematic uncertainty
as a sampling parameter. These modifications, already implemented in NMMA,2 is
model-agnostic and can be applied to any EM model irrespective of the nature of
the transient, e.g., also for gamma-ray-burst afterglows or supernovae.

6.1 Implementation Details

6.1.1 Freely Sampled Systematic Uncertainty
In this implementation, systematic uncertainty is treated as a free parameter, de-
noted by σsys, which is sampled from a predefined prior probability distribution
rather than being fixed. This is expressed as

1Ref. [3] used the freely sampled systematic error treatment as implemented in commit
32aadf8 .

2See PRs 383 and 387 .

https://github.com/nuclear-multimessenger-astronomy/nmma/commit/32aadf89fa29023dfd8970a34a8231261972874a
https://github.com/nuclear-multimessenger-astronomy/nmma/pull/383
https://github.com/nuclear-multimessenger-astronomy/nmma/pull/387
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σsys ∼ P (σsys), (6.1)

where P (σsys) represents the prior distribution. The choice of prior can vary de-
pending on empirical constraints, with common choices including a uniform or log-
uniform distribution

P (σsys) = U(a, b), (6.2)

or

P (log σsys) = U(log a, log b). (6.3)

During inference, σsys is sampled along with other parameters, and its effect is
incorporated into the likelihood function as the quadrature sum of statistical and
systematic uncertainties as illustrated in the denominator of Eq. (5.3) → p.32 . This
allows for a more flexible treatment of systematic effects by marginalizing over σsys
in the posterior distribution,

P (θ⃗, σsys | d) ∝ L(d | θ⃗, σsys)P (θ⃗)P (σsys), (6.4)

where θ⃗ represents the set of model parameters, d is the data, and L is the likelihood
function.

By defining σsys as a variable sampled from a prior probability distribution, we al-
low the inference process to adaptively account for systematic effects without fixing
them a priori. This flexibility is critical when empirical constraints on systematic un-
certainties are uncertain or context-dependent, as it permits the model to adaptively
explore the plausible range of σsys during sampling. As the posterior distribution,
Eq. (6.4) → p.38 , integrates this nuisance parameter alongside the model parameters θ⃗,
this approach also provides a mechanism to assess the goodness of fit by examining
the marginalized behavior of σsys [3].

Model selection

The inclusion of the systematic uncertainty parameter σsys in the Bayesian evidence
is crucial for obtaining an accurate and representative inference of model parameters,
particularly in cases where systematic effects may significantly influence the data.

Incorporating σsys into the Bayesian evidence ensures that all potential systematic
effects are properly integrated into the analysis, thus reflecting a more complete
description of the data. If σsys were excluded, the evidence would effectively disre-
gard the systematic uncertainties, leading to an incomplete or biased model of the
data. By allowing σsys to be sampled from a prior distribution, it is possible to
marginalize over these uncertainties and evaluate the likelihood of the data under
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varying assumptions about the magnitude of systematic errors. This marginaliza-
tion is particularly important in cases when the prior knowledge does not provide
exact estimates for systematic uncertainties, but rather offers a range of plausible
values.

Furthermore, σsys influences the Bayesian model comparison by affecting the model
evidence, which becomes important while determining the relative plausibility of
competing models. As systematic uncertainties may significantly alter the interpre-
tation of the data, their treatment in the evidence calculation directly impacts the
model selection. Ignoring these uncertainties would undermine the validity of model
comparisons and potentially lead to misleading conclusions about the best-fitting
model. Hence, one may need to be cautious when interpreting the Bayesian evidence
when using such a nuisance parameter.3

6.1.2 Time-Dependent Systematic Uncertainty
Radiative transfer models have made significant progress in kilonova modeling, yet
discrepancies persist, particularly at very early times (<1 day) and late times
(>1 week). At early times, the ejecta is extremely hot, dense, and expanding
rapidly, leading to highly ionized atomic states for which opacity data remains incom-
plete [142,168]. Additionally, aspherical geometries complicate spectral modeling,
while inefficient thermalization of radioactive decay products [74,78] affects early
light curve predictions. These challenges hinder accurate parameter estimation from
observed early-time spectra, such as those from AT2017gfo.

At later times, as the ejecta expands and cools, it transitions into a nebular phase
where local thermodynamic equilibrium (LTE) approximations break down. The
spectrum becomes dominated by line emission, requiring a full non-LTE treatment,
which is computationally demanding [166]. Furthermore, evolving opacities due to
the recombination of lanthanides and actinides introduce additional uncertainties in
the predicted light curves [169]. Multi-component ejecta structures and viewing-
angle dependencies further complicate light curve interpretations [170]. While
recent advances, such as improved atomic databases and multi-dimensional radiative
transfer models, have helped mitigate these issues, systematic uncertainties remain
a critical challenge for inferring merger properties from kilonova observations.

To address these challenges, we introduce a time-dependent systematic uncertainty
model that accounts for the evolving nature of kilonova properties across different
epochs. Specifically, we define σsys as a function of time, σsys(t), allowing systematic
effects to vary over the course of the kilonova event. The systematic uncertainty
is modeled using a piecewise linear interpolation scheme, where σsys(t) is sampled
from a prior distribution at fixed time intervals during the inference process and
then linearly interpolated at measurement times. Mathematically, this is expressed
as

3Subtle foreshadowing regarding the analysis of AT2017gfo.
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σsys(t) = σn + σn+1 − σn

tn+1 − tn

· (t− tn), for tn ≤ t < tn+1, (6.5)

where n = 0, 1, ..., N − 1, N is the total number of sampling times, and σn follows a
prior distribution P (σsys).

The likelihood function for parameter inference, incorporating both statistical and
systematic uncertainties, is given by

L(θ⃗) ∝ exp

−1
2
∑
ij

(
mj

i −mj, est
i (θ⃗)

)2

(
σj

i

)2
+ (σsys,i)2

, (6.6)

where mj
i is the observed AB magnitude in filter j at time ti with corresponding

measurement error σj
i ≡ σj(ti), while mj, est

i (θ⃗) is the estimated AB magnitude for
the source parameters θ⃗ (e.g., ejecta masses, velocities) from the model. The term
σsys,i represents the interpolated systematic error at time ti.

The described procedure is illustrated in Fig. 6.1 → p.40 , where black crosses represent
the mock data and red line denotes the best-fit light curve.4 The red-shaded region
corresponds to the systematic uncertainty in the best-fit posterior. Additionally,
the surrounding Gaussian distribution represents the denominator of Eq. (6.6) → p.40 ,
encapsulating both statistical and systematic uncertainties.
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Figure 6.1: The stem plot shows the placement of four time nodes at 0, 4.67, 9.34, and 14 days
used for interpolation.

4Best-fit light curves are obtained by maximizing the likelihood function, also known as Maxi-
mum Likelihood Estimation (MLE), where the MLE estimate θ̂ given by, θ̂ = arg max

θ∈Θ
L(θ). This

θ̂ is the set of parameters that maximizes the likelihood function L(θ). The light curves are then
generated using the best-fit parameters θ̂.
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6.1.3 Time- and Filter-Dependent Systematic Uncertainty
At early times, when emission peaks in the ultraviolet and blue bands, significant un-
certainties arise due to incomplete atomic data, relativistic expansion effects, and de-
viations from spherical symmetry. In contrast, late-time infrared emission is affected
by non-local thermodynamic equilibrium (non-LTE) conditions, evolving opacities of
lanthanides and actinides, and uncertainties in atomic structure data. The distinct
sources of error across different spectral regions necessitate a systematic treatment
that accounts for their wavelength dependence to improve parameter inference from
kilonova observations.

A single, time-independent uncertainty model is insufficient given the spectral evo-
lution of kilonovae, as different opacity sources and thermalization efficiencies dom-
inate at different wavelengths and epochs. The early-time blue emission is partic-
ularly sensitive to uncertainties in the opacity of light r-process elements, while
late-time infrared emission depends on the complex atomic physics of heavy ele-
ments.

To address these challenges, we extend the time-dependent interpolation scheme to
incorporate filter-specific systematic errors. This is achieved by defining σsys as a
function of time and filter, σj

sys(ti), where j denotes the filter index. The selection
of filters requiring independent and joint treatment of systematic uncertainties is
determined by evaluating the Mean Absolute Deviation (MAD) for each filter and
comparing it to the overall MAD computed across all filters. The MAD serves as
a statistical measure of dispersion, by determining the variability within individual
filters relative to the entire dataset. The filter-specific MAD is computed as

MADj = 1
nj

nj∑
i=1
|xi,j − µj|, (6.7)

where xi,j is the AB magnitude in filter j at time ti, µj is the mean of all AB
magnitudes in filter j, and nj is the total number of data points in filter j. Similarly,
the total MAD is calculated as

MAD = 1
n

n∑
i=1
|xi − µ|, (6.8)

where xi is the AB magnitude at time ti, µ is the mean of all AB magnitudes and
n is the total number of data points across all available filters.

Given this, the likelihood in Eq. (6.6) → p.40 is modified to include filter-specific sys-
tematic uncertainties, resulting in

L(θ⃗) ∝ exp

−1
2
∑
ij

(
mj

i −mj, est
i (θ⃗)

)2

(
σj

i

)2
+
(
σj

sys,i

)2

, (6.9)

where σj
sys,i is the interpolated systematic error at time ti and filter j.
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6.2 Validation
To assess the validity of our approach, we performed a series of injection-recovery
tests on synthetic light curves generated using the Ka2017 and Bu2019lm models.
These synthetic light curves were constructed with a uniform time step of 0.5 days
over a duration of 20 days. To simulate real-world observational constraints, such
as weather conditions, instrumental limitations, and scheduling gaps, we randomly
selected 45% of the data points for analysis.

Since the synthetic light curves generated by these models provide single values
at each time step without measurement (statistical) uncertainties, we introduced
a random noise to each data point. This noise follows a Gaussian distribution
with zero mean and a standard deviation of 0.1 mag, thereby mimicking realistic
observational noise. The perturbed light curves then serve as injections for our
parameter estimation pipeline.

Given the limitations of the underlying models, we restrict the data used for pa-
rameter estimation to the first seven days for Ka2017 and the first fourteen days
for Bu2019lm. In particular, we limit the Ka2017 model to one week because
some light curves exhibit unphysical features at later epochs, such as an artificial
increase in luminosity, likely due to the low signal-to-noise ratio in the underlying
simulations at late times (cf. Ch. C → p.71 ).

We then performed cross-matching injection-recovery tests, wherein the light curves
generated from Ka2017 were injected into the Bu2019lm model and vice versa. A
total of four injection-recovery tests were performed, incorporating different system-
atic uncertainty treatments: (1) a fixed 1 mag systematic uncertainty, (2) a freely
sampled systematic uncertainty, (3) a time-dependent systematic uncertainty, and
(4) a time- and filter-dependent systematic uncertainty.

The injection parameters used in this work are motivated by the observed properties
of AT2017gfo and are summarized in Tab. 6.1 → p.43 , along with the respective priors.
To facilitate a direct comparison between the posterior distributions of the two
competing models, we focus primarily on their shared parameters—namely, the
luminosity distance, DL, and the total ejecta mass, log10 Mej. In the case of the
Bu2019lm model, the total ejecta mass is defined as the sum of the wind and
dynamical ejecta components, Mej = Mej,wind + Mej,dyn.

6.2.1 Fixed Systematic Uncertainty
Following Refs. [19,67,151], we first consider a fixed systematic uncertainty of
1 mag for all data points. From Fig. 6.2 → p.44 , it is evident that the assumed 1
mag uncertainty is sufficient for the recovered light curves to reliably approximate
the injected light curves, even when different models are used for the injection and
recovery. Regarding the recovery of the injected parameters, we find that when the
same model is used for both the injection and recovery, the injected parameters are
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Parameter
Model Bu2019lm Ka2017

Injection Priors Injection Priors
DL[Mpc] 40 N (40, 1.89) 40 N (40, 1.89)
log10 Mej[M⊙]

– –
−1.43 U(−3,−1)

log10 vej[c] −0.74 U(−1,−0.6)
log10 Xlan −3.38 U(−5,−2)
Φ[deg] 68.69 U(15, 75)

– –
ι[rad] 0.43 U(0, π

2 )
log10 Mdyn

ej [M⊙] −1.18 U(−3,−1)
log10 Mwind

ej [M⊙] −2.25 U(−3,−0.5)

Table 6.1: Injection values and priors used to generate the mock light curves and perform param-
eter estimation to test the implemented algorithm.

recovered reliably within the statistical uncertainties, without any noticeable bias.
However, when a different model is used for recovery, we observe systematic biases
in the recovered posteriors of the source parameters.

In general, the Bu2019lm model recovers the injected values more accurately for
both models than the Ka2017 model. This difference can be attribute to the fact,
that, the two-component ejecta in the Bu2019lm model provides greater flexibility
during light curve fitting.

6.2.2 Freely Sampled Systematic Uncertainty
The inclusion of systematic uncertainty as a freely sampled parameter provides a
more realistic representation of the uncertainties encountered in real-world kilonova
observations. In this test, the systematic uncertainty is allowed to vary, drawn
from a uniform prior between 0 and 2, thereby enabling the inference framework
to marginalize over potential deviations between the models and the observed data.
The results of this analysis are shown in Fig. 6.3 → p.47 . While the recovered light
curves are largely consistent with the injected light curves, the recovered posteriors
exhibit significant deviations, particularly in the ejecta mass parameter.

6.2.2.1 Self-Consistent Injection and Recovery

When performing injection and recovery with the same model, Bu2019lm for both
injection and recovery, the light curve fits remain consistent with the injected data.
However, despite this agreement in photometric evolution, the posterior distribu-
tions indicate that the ejecta mass parameter is not well recovered within the 90%
credible interval (CI). The systematic uncertainty posterior is notably high, indicat-
ing that the inference framework is compensating for model discrepancies through
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Figure 6.2: Top panels: Light curves for the validation test employing a constant 1-magnitude
uncertainty. The crosses represent the injected light curve employed as input for the Bayesian
inference. The band represents the 90% credibility region of the light curves generated from the
posterior samples. Bottom panels: 2D marginalised posteriors of Bu2019lm (left) and Ka2017
(right) with injected parameters are indicated by dash lines and shaded region represents the 2σ
credible intervals.
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systematic uncertainty rather than constraining the physical parameters. This be-
havior suggests that even within a self-consistent framework, freely sampling sys-
tematic uncertainty can obscure the true ejecta properties by absorbing differences
between the model and the data.

Similarly, for the Ka2017 self-consistent case, the light curve fit remains accurate,
and the systematic uncertainty posterior is relatively lower. However, despite the
lower inferred systematic uncertainty, the ejecta mass parameter is still not recovered
within the 90% CI, suggesting that, Ka2017, despite being self-consistent in this
scenario, lacks the necessary complexity to fully constrain the ejecta mass.

6.2.2.2 Cross-Model Injection and Recovery

When injecting with the Bu2019lm model and recovering with Ka2017, the light
curve fits remain satisfactory, but the ejecta mass is not recovered reliably. The
posterior distribution of systematic uncertainty remains low, suggesting that the
Ka2017 model can adequately fit the light curves without requiring significant
adjustments to systematic uncertainty. However, this comes at the cost of parameter
accuracy, as the ejecta mass is poorly constrained. This indicates that Ka2017,
being a simpler model compared to Bu2019lm, forces a fit to the data rather than
fully capturing the underlying ejecta physics.

Conversely, when injecting with Ka2017 and recovering with Bu2019lm, the in-
ference framework is able to recover both the ejecta mass and luminosity distance
parameters. However, the posteriors exhibit increased uncertainties, as reflected in
the broader light curve credible regions and parameter distributions. This suggests
that Bu2019lm, having a more flexible two-component ejecta prescription, can bet-
ter accommodate the Ka2017 injection while maintaining some level of parameter
recovery. Nonetheless, this flexibility results in wider uncertainties, indicating that
while Bu2019lm avoids strong biases, it does not necessarily lead to tighter con-
straints on source properties as compared to Ka2017while also trying to compensate
for the systematic uncertainties.

6.2.2.3 Discussion

The results indicate a fundamental trade-off between light curve fitting and param-
eter recovery. In cases where systematic uncertainty is inferred to be low, the light
curves are well-matched to the observed data, but the parameter recovery is poor.
On the other hand, when systematic uncertainty is inferred to be high, the param-
eter recovery improves but at the expense of larger uncertainties in both the light
curves and posteriors.

Furthermore, model mismatch between injection and recovery plays a significant
role in parameter biases. Ka2017 recovery struggles to capture the ejecta mass of
Bu2019lm injections, whereas Bu2019lm is more flexible and can accommodate
Ka2017 injections, albeit with increased uncertainties. This suggests that more
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complex models, while providing better overall recovery, may introduce additional
uncertainty in their predictions.

A key observation is that Ka2017 recovery fails to constrain the ejecta mass, even
in self-consistent scenarios. This suggests that the issue is not merely due to sys-
tematic uncertainty but is intrinsic to the Ka2017 model’s ability to constrain the
ejecta mass from light curve data. On the other hand, Bu2019lm exhibits greater
flexibility but at the cost of increased uncertainty.

6.2.3 Time-Dependent Systematic Uncertainties
Relaxing the assumption of a constant 1 mag systematic uncertainty and instead
allowing for a time-dependent uncertainty significantly impacts the accuracy of the
recovered light curves. This approach acknowledges that systematic uncertainties
evolve over time, better reflecting the complexity of real observational data. By
permitting systematic uncertainty to vary dynamically, we aim for a more realistic
marginalization over model discrepancies and data uncertainties.

6.2.3.1 Self-Consistent Injection and Recovery

Performing self-consistent injection and recovery represents an idealized, best-case
scenario where the inference model fully encapsulates the physics governing the
injected kilonova light curve. In such a case, we expect the estimated systematic
uncertainty, σsys(t), to remain minimal throughout the entire evolution of the light
curve. This expectation is confirmed in our analysis and is evident in Fig. 6.4 → p.49 .
The 90% posterior light curve bands remain tightly bound around the injected data,
with the injected light curve consistently falling within these bands across all filters
and times.

The inferred systematic uncertainty remains on the order of O(0.1mag), which pri-
marily stems from the observational uncertainties artificially introduced into the
injection data. This improved accuracy of the recovered light curves translates
directly into more precise parameter inference. Specifically, the posterior distribu-
tions of source parameters exhibit a faithful parameter recovery and reduced spread
around the injected values, with the width of the posterior shrinking by up to a
factor of two. As seen in Fig. 6.4 → p.49 , the posterior distributions for distance and
ejecta mass are more tightly constrained around the true injected values compared
to the previous scenarios.

6.2.3.2 Cross-Model Injection and Recovery

The impact of time-dependent systematic uncertainty becomes more complex when
performing cross-model injection and recovery. When injecting Ka2017 light curves,
both the Ka2017 and Bu2019lm models are able to recover the injected param-
eters within reasonable accuracy. However, a significant difference emerges in the
uncertainty of the recovered parameters. The Bu2019lm model’s posteriors exhibit
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Figure 6.3: Same as Fig. 6.2 → p.44 , for a freely sampled systematic uncertainty.
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considerably broader distributions—over five times larger than those of Ka2017.
This suggests that Bu2019lm has the flexibility to fit the injected light curves
well, but at the cost of increased uncertainty in the recovered parameters. The
systematic uncertainty posterior further supports this interpretation, as it shows
that Bu2019lm compensates for discrepancies between the models by inflating the
inferred uncertainty.

Conversely, the situation is different when injecting Bu2019lm light curves and
attempting to recover them using the Ka2017 model. In this case, the recovered
ejecta mass deviates significantly from the injected value, indicating a substantial
bias in the recovered parameters. The root cause of this discrepancy lies in the fun-
damental differences between the models. The Ka2017 model, being a spherically
symmetric, single-component ejecta model, lacks the flexibility to fully capture the
complex structure of Bu2019lm light curves. As a result, it struggles to accurately
recover the source parameters, leading to biased posteriors and poor parameter in-
ference.

6.2.3.3 Discussion

These finding underscores the importance of selecting physically motivated mod-
els that adequately capture the multi-component nature of kilonovae. While time-
dependent systematic uncertainty certainly improves light curve fitting, it cannot
fully compensate for a model that lacks the necessary physical complexity. The fail-
ure of Ka2017 to recover Bu2019lm injections exhibits the limitations of simplistic
ejecta prescriptions.

Nonetheless, time-dependent systematic uncertainty provides a more flexible and re-
alistic approach to modeling observational uncertainties in kilonova light curves. By
allowing σsys(t) to evolve dynamically, we achieve improved light curve fits and re-
duced parameter uncertainty, particularly when the inference model closely matches
the injected model.

The key takeaway is that while systematic uncertainty marginalization can mitigate
some model discrepancies, it cannot fully correct for an inadequate physical descrip-
tion. The failure of Ka2017 to recover Bu2019lm injections demonstrates that
kilonova models must capture multi-component ejecta structures to provide reliable
parameter estimates.

6.2.4 Time- and Filter-Dependent Uncertainties
In our final test analysis, we introduce a time- and filter-dependent uncertainty
model, allowing systematic uncertainties to vary not only with time but also across
different photometric bands. This approach is motivated by initial tests, particularly
those analyzing AT2017gfo, which revealed the most significant differences in the
ultraviolet (u-band) and infrared (K-band) filters. To account for this, we allow
separate systematic uncertainties for the u- and K- bands while grouping all other
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bands (g to H) under a single uncertainty parameter.

This choice, while practical, is not unique. A fully generalized approach would in-
volve assigning independent systematic uncertainties to each filter, which could pro-
vide even finer control over model discrepancies. However, increasing the number of
free uncertainty parameters also introduces computational challenges. Compared to
the purely time-dependent uncertainty model discussed in the previous section, our
filter-dependent analysis requires three times as many free parameters, significantly
increasing the runtime of the inference process. Despite this trade-off, incorporat-
ing filter-dependent uncertainties allows us to better assess the impact of model
discrepancies in different spectral regions.

6.2.4.1 Self-Consistent Injection and Recovery

As expected, when using the same model for both injection and recovery, the re-
sulting light curve reconstruction remains highly accurate. The inferred systematic
uncertainties remain small across all filters, reflecting the fact that the model is
trying it’s best to encapsulate the underlying physics of the injected kilonova light
curve. As a result, the recovered source parameters show minimal deviation from
the injected values, with uncertainties comparable to those observed in the purely
time-dependent uncertainty case.

This result reinforces our previous findings: when the inference model is well-matched
to the true underlying kilonova physics, marginalizing over systematic uncertainty
(whether time-dependent or filter-dependent) does not introduce significant bias.
Instead, the recovered light curves and posteriors exhibit only minor broadening,
reflecting the observational uncertainties rather than fundamental modeling limita-
tions. The consistency of these results suggests that incorporating filter-dependent
uncertainties does not fundamentally alter the conclusions drawn from the time-
dependent uncertainty approach, at least in the case of self-consistent injection and
recovery.

6.2.4.2 Cross-Model Injection and Recovery

The limitations of model-dependent recovery become more pronounced when ap-
plying this filter-dependent approach to cross-model injection and recovery. When
attempting to recover Bu2019lm injections using the Ka2017 model, we again
observe a failure to accurately infer the ejecta mass. This is consistent with our pre-
vious findings, where the Ka2017 model—being a single-component ejecta model—
lacks the flexibility to fully capture the complex, multi-component structure of
Bu2019lm injections.

Despite the added degrees of freedom introduced by filter-dependent uncertainties,
the underlying model discrepancies persist. While the inferred light curves may
achieve better fits due to the additional flexibility, the posteriors remain biased. This
suggests that marginalizing over systematic uncertainties—whether through a time-
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dependent or filter-dependent approach—cannot fully compensate for a fundamental
mismatch between the injection and recovery models.

In contrast, when injecting Ka2017 light curves and recovering them with Bu2019lm,
the results mirror those of the time-dependent case. The Bu2019lm model success-
fully fits the injected light curves, perhaps with broader posteriors, particularly for
the ejecta mass. This suggests that while Bu2019lm has the flexibility to accom-
modate Ka2017-like light curves, it does so at the cost of increased parameter
uncertainty. The systematic uncertainty posteriors further confirm this interpreta-
tion, as they remain elevated, indicating that Bu2019lm compensates for model
discrepancies by inflating the inferred uncertainty.

6.2.4.3 Discussion

Our results demonstrate that incorporating filter-dependent uncertainties does not
fundamentally alter the conclusions drawn from time-dependent uncertainty models.
While allowing systematic uncertainties to vary across different photometric bands
improves light curve fits, it does not resolve the underlying issue of model mismatch.
In particular, simplistic models like Ka2017 continue to struggle when applied to
complex, multi-component ejecta structures, leading to biased parameter inference.

While, the systematic uncertainty marginalization, whether time-dependent or filter-
dependent, is a valuable tool for addressing observational uncertainties it still cannot
fully correct for deficiencies in the physical modeling of kilonovae. Hence, even with
the added flexibility of time- and filter-dependent uncertainties, the uncertainties
must be limited at the physical modeling stage.
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7Analyzing AT2017gfo

Parts of this chapter are based on the article Data-driven approach for mod-
eling the temporal and spectral evolution of kilonova systematic uncer-
tainties by Sahil Jhawar, Thibeau Wouters, Peter T. H. Pang, Mattia Bulla,
Michael W. Coughlin, and Tim Dietrich published in Physical Review D, Volume
111, Issue 4, February 2025.
In the previous section, we validated our uncertainty quantification method using
synthetic injections. These tests confirmed the robustness of our approach but
also highlighted the importance of employing more physically complete models,
such as those incorporating non-spherical symmetry when interpreting real observa-
tional data. Building on these results, we now apply our uncertainty framework to
the observed kilonova AT2017gfo. Given the relatively better performance of the
Bu2019lm model during our validation tests, we focus exclusively on this model for
further analysis. Tab. 7.1 → p.53 reports the priors used for the analysis of AT2017gfo.

Parameter Prior
DL [Mpc] N (40, 1.89)
Φ [deg] U(15, 75)
ι [rad] U(0.37, 0.04)
log10 Mdyn

ej [M⊙] U(−3,−1)
log10 Mwind

ej [M⊙] U(−3,−0.5)
σsys U(0, 2)

Table 7.1: Priors used for the analysis of AT2017gfo.

7.1 Time-Dependent Systematic Uncertainties
An important aspect of this investigation is to assess the impact of the number of
time nodes on the inferred posteriors. To this end, we perform parameter estimation
using seven different time node configurations, with N ∈ {4, 6, 8, 10, 12, 14, 16}. For
comparison, we also analyze AT2017gfo using a constant 1 mag systematic uncer-
tainty, as well as a freely sampled systematic error modeled as σsys = U(0, 2). The
results of these analyses are summarized in Tab. 7.2 → p.55 . The best-fit light curves
for different time node configurations are shown in Fig. 7.1 → p.54 . The recovered
posteriors are visualized in Fig. B.5 → p.68 and further summarized in Tab. 7.2 → p.55 .

7.1.1 Impact of Time Nodes on Posterior Distributions
Our results indicate that the number of time nodes has a relatively minor influence
on the recovered source parameters. The inferred posteriors remain consistent across
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Nodes
Parameter

DL Φ ι log10 Mdyn
ej log10 Mwind

ej ln Lmax ln Lmax
ref Runtime

– 40.33+2.76
−2.48 60.53+4.77

−4.88 0.40+0.07
−0.09 −1.97+0.09

−0.07 −1.27+0.06
−0.05 −145.162 −51.648 05 m 57 s

– 40.53+3.05
−2.85 60.65+7.19

−8.99 0.37+0.08
−0.08 −1.96+0.13

−0.13 −1.26+0.09
−0.08 −119.275 −25.762 11 m 16 s

4 42.83+2.53
−2.78 60.65+3.57

−4.48 0.40+0.08
−0.08 −1.91+0.08

−0.10 −1.27+0.07
−0.07 −98.971 −5.457 20 m 15 s

6 43.28+2.46
−2.75 60.64+3.50

−3.92 0.40+0.08
−0.08 −1.93+0.08

−0.10 −1.31+0.07
−0.08 −97.729 −4.215 33 m 47 s

8 42.75+2.52
−2.60 60.30+3.57

−4.76 0.40+0.07
−0.08 −1.89+0.07

−0.09 −1.27+0.06
−0.07 −93.514 ref. 46 m 52 s

10 42.83+2.53
−2.77 59.97+3.74

−4.52 0.40+0.08
−0.08 −1.92+0.08

−0.10 −1.30+0.08
−0.08 −93.630 −0.116 1 h 02 m 48 s

12 42.61+2.59
−2.72 60.81+3.58

−4.47 0.40+0.08
−0.08 −1.91+0.08

−0.10 −1.28+0.07
−0.08 −92.676 0.838 1 h 06 m 50 s

14 42.54+2.52
−2.59 60.36+3.40

−3.91 0.40+0.08
−0.08 −1.92+0.08

−0.09 −1.31+0.07
−0.07 −92.530 0.984 1 h 40 m 02 s

16 42.25+2.56
−2.70 59.98+3.58

−4.31 0.40+0.08
−0.08 −1.91+0.07

−0.09 −1.31+0.08
−0.08 −92.382 1.132 1 h 46 m 40 s

Table 7.2: Posterior values with 2σ CI, maximum log-likelihoods (lnLmax), and maximum log-
likelihood ratios (lnLmax

ref ) values for AT2017gfo with different systematic configuration. First row:
Values with a constant systematic error of 1 mag. Second row: Values with a freely sampled
systematic error with a prior of U(0, 2). For runtime comparison, we use 10 cores on an Intel Xeon
Platinum 8270 CPU for each run.

different configurations, with their uncertainties overlapping significantly. This sug-
gests that our method remains relatively stable regardless of the specific choice of
time nodes, as long as a sufficient number is used to capture the variability of the
kilonova light curve.

However, an important trend emerges when examining the behavior of the system-
atic uncertainty as a function of time. As shown in the bottom panel of Fig. 7.1 → p.54 ,
the inferred systematic uncertainty is largest at early times (< 1 day) and at late
times (> 5 days). This can be attributed to two key factors:

• Sparse Observational Coverage at Early Times: The scarcity of early-time data
points introduces larger uncertainties in the inferred light curves (for e.g., until
2 days there is only one data point in u band and ≤ 4 data points in zyJHK
bands). This highlights the critical need for rapid follow-up observations of
kilonovae, as emphasized in recent observational studies (e.g., [171]).

• Limitations of the Bu2019lm Model: The systematic uncertainties at early
(≲ 1 day) and late (≳ 5 days) times likely reflect intrinsic limitations in the un-
derlying assumptions of the Bu2019lm model. Specifically, early-time uncer-
tainties arise due to the opacities implemented in POSSIS, which are computed
only for low-ionization states [74,142]. At late times, systematic uncertainties
increase as the assumption of local thermodynamic equilibrium starts to break
down [166,167].

7.1.2 Selecting an Optimal Time Node Configuration
While all time node configurations yield broadly consistent posterior distributions,
an important consideration is determining which setup is sufficiently flexible to repre-
sent the underlying systematic uncertainties without introducing excessive computa-
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Figure 7.2: Posterior distribution of the recovered source parameters of AT2017gfo. Different
colors represent different employed number of time nodes.

tional overhead. As mentioned in Sec. 4.1.4 → p.22 , model selection is often performed
using Bayes factors. However, in our case, the systematic uncertainty parameters
do not represent physical quantities but rather introduce artificial degrees of free-
dom. To avoid invoking Occam’s razor1 inappropriately, we instead compare the
maximum log-likelihood across different configurations, as reported in Tab. 7.2 → p.55 .

As expected, the most flexible configuration, with 16 time nodes, achieves the high-
est maximum log-likelihood. However, the improvement in log-likelihood is marginal
compared to configurations with fewer time nodes, while the computational cost in-
creases substantially. Beyond the eight-time-node configuration, the runtime scales
significantly, making higher node configurations computationally expensive without
offering proportional gains in model accuracy. Based on this trade-off, we adopt the
eight-time-node configuration as our reference for further time- and filter-dependent
analysis.

1Occam’s razor is a philosophical principle stating that, among competing hypotheses that ex-
plain the same phenomenon, the simplest one is preferred. It suggests that unnecessary complexity
should be avoided unless additional assumptions significantly improve explanatory power.
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7.2 Time- and Filter-Dependent Systematic Un-
certainties

In addition to the previous analyses, we apply our method to AT2017gfo while
incorporating time- and filter-dependent uncertainties.

The choice of filters to be sampled independently is motivated by the MAD, cf.
Sec. 6.1.3 → p.41 . From Fig. 7.3 → p.57 , we observe that the u and K bands exhibit the
highest positive deviation from the baseline MAD. This indicates that the systematic
uncertainties in these bands biases the parameter estimation from those in the other
bands, justifying the need to sample them independently.
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Figure 7.3: MAD plot for AT2017gfo. The crosses represent the MAD values for per filter and
per time node configuration ( Eq. (6.7) → p.41 )and dashed line represents the total MAD value per
time node configuration ( Eq. (6.8) → p.41 ).

The best-fit light curves obtained from this analysis are presented in Fig. 7.4 → p.59 ,
and the recovered source parameters are summarized in Tab. 7.2 → p.55 .2 From Fig. 7.4 → p.59 ,
it is evident that the systematic uncertainty in the u band remains relatively low,
below 1 magnitude for the first six days, despite the presence of only a single detec-
tion point. However, after six days, the uncertainty increases as the model struggles
to provide an accurate fit due to the sparsity of observational data. For the K band,
while for first six days, the error is below 0.5 magnitudes, the uncertainty increases
to as high as 2 magnitudes at later times. This is likely due to the fact that for K
model is likely to breakdown due to reason discussed previously. The other bands,

2See Ch. B → p.68 for full posteriors and light curves.
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such as z, y, and J , exhibit a more stable behavior, with uncertainties remaining
below 1 magnitude throughout the observed time range.

Although, introducing the filter-dependent systematic uncertainty leads to a sub-
stantial increase and decrease in the maximum log-likelihood compared to the 8
time nodes configuration of filter-independent uncertainty approach, the recovered
parameters themselves remain largely unchanged (cf. Tab. B.1 → p.68 ). This sug-
gests that model uncertainties are absorbed by the systematic error term, there by
inflating the uncertainties in the light curves.
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8Conclusion
In this thesis, we have developed and validated a comprehensive framework for quan-
tifying systematic uncertainties in kilonova light curve modeling, with particular
emphasis on their time and filter dependencies. Through a systematic investiga-
tion of different uncertainty parameterizations, we have demonstrated that properly
accounting for these uncertainties is crucial for accurate parameter inference in kilo-
nova observations.

Our validation tests using synthetic light curves from the Ka2017 and Bu2019lm
models revealed several important findings. First, when using a fixed systematic
uncertainty approach (1 mag), we observed that parameters could be recovered ac-
curately within statistical uncertainties when the same model was used for both
injection and recovery. However, significant biases emerged during cross-model
analyses, highlighting the inherent limitations of simplistic models and uncertainty
treatments.

The freely sampled systematic uncertainty approach, while providing more flexibil-
ity, illustrated a fundamental trade-off between light curve fitting and parameter
recovery. Low inferred systematic uncertainties often corresponded to well-fitted
light curves but poor parameter recovery, while high inferred uncertainties improved
parameter recovery at the cost of larger uncertainties in light curves and posteriors.

A key insight from our work is that time-dependent systematic uncertainties signif-
icantly improved parameter recovery across all scenarios. By allowing uncertainties
to evolve dynamically over time, we achieved more accurate light curve fits and re-
duced parameter uncertainty, particularly when the inference model closely matched
the injected model. This approach proved especially valuable in self-consistent sce-
narios, where the estimated systematic uncertainty remained minimal throughout
the light curve evolution.

Our most sophisticated approach, involving both time and filter dependence in sys-
tematic uncertainties, provided additional flexibility by allowing uncertainties to
vary not only with time but also across different photometric bands. While this
approach improved light curve fits, it did not fundamentally alter our conclusions
regarding model mismatch. In particular, simplistic models like Ka2017 continued
to struggle when applied to complex, multi-component ejecta structures, leading to
biased parameter inference regardless of uncertainty treatment.

Application of our methodology to AT2017gfo revealed that systematic uncertainties
are most prominent at early times (<1 day) and late times (>5 days). This pat-
tern reflects both observational limitations (sparse early-time coverage) and inherent
model limitations (opacity approximations at early times and breakdown of local
thermodynamic equilibrium assumptions at late times). Our analysis of AT2017gfo
using different time node configurations showed that while all configurations yielded
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broadly consistent posterior distributions, an eight-time-node configuration offered
the optimal balance between flexibility and computational efficiency.

Perhaps most significantly, our work demonstrates that while systematic uncertainty
marginalization can mitigate some model discrepancies, it cannot fully compensate
for fundamental limitations in physical modeling. The persistent failure of Ka2017
to recover Bu2019lm injections underscores the critical importance of employing
physically complete models that accurately capture the multi-component nature of
kilonovae.

The framework developed in this thesis represents a significant advancement in un-
certainty quantification for kilonova modeling and can be readily extended to other
electromagnetic transient phenomena. By providing a more nuanced approach to
systematic error treatment, our work contributes to improving the reliability of
parameter estimation in future kilonova observations, which will be crucial for ex-
tracting meaningful astrophysical insights from upcoming gravitational wave events
with electromagnetic counterparts.

As we enter an era of multi-messenger astronomy with increasingly sensitive gravita-
tional wave detectors and rapid electromagnetic follow-up capabilities, the accurate
characterization of kilonova properties will play an essential role in constraining
neutron star equation of state, heavy element nucleosynthesis, and cosmological
parameters. The methodologies developed in this thesis provide a robust founda-
tion for these future endeavors by ensuring that parameter uncertainties accurately
reflect both statistical and systematic sources of error.
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APOSSIS Systematics
As highlighted in Ch. 2 → p.4 and Sec. 3.1 → p.15 , the luminosity of a kilonova is affected
the opacity of the ejecta material, governed by how easily photons can escape from
the expanding ejecta, thereby shaping both the peak brightness and the temporal
evolution of the light curve.

To systematically investigate the role of opacity in shaping the observable light
curves, we perform POSSIS simulations by scaling the opacity κ by a scaling factor
α ∈ {0.5, 1, 2} and compute the synthetic light curves. These scalings do not
correspond to physically different compositions but rather mimic the uncertainty or
variability in opacities due to, for example, incomplete atomic data or variations in
ejecta ionization states.

Fig. A.1 → p.63 shows the resultant broadband light curves for 11 viewing angles (uni-
formly distributed in cosine of observation angle), across three values of opacity
scaling. With α = 1, the fiducial opacity κ is used without modification. The case
of α = 0.5 corresponds to a reduced opacity, allowing photons to diffuse more readily
through the ejecta, resulting in a brighter and earlier-peaking kilonova. In contrast,
increasing the opacity by a factor of two (α = 2) leads to a delayed and fainter
emission profile due to longer photon diffusion timescales and increased trapping of
radiation within the ejecta.

An additional observation from the opacity-scaling is that light curves computed
with higher opacity values (i.e., α = 2) exhibit more erratic and noisy behavior.
This effect is most noticeable in the θ = 90◦ (equatorial) viewing direction, where
the line-of-sight optical depth is already higher due to the geometry of the ejecta.
This variability can be attributed to the fact that, with higher opacity, photons
undergo more scatterings and absorptions before escaping the ejecta. This results
in a more complex and stochastic propagation history for each photon packet. Even
small differences in the location of emission or path taken can significantly affect
the final observed flux, leading to increased variability in the light curve, especially
when sampled over discrete time bins.

Moreover, at high opacity, photon packets can become “trapped” for longer periods,
undergoing a large number of interactions. This increases the computational burden
and decreases the statistical efficiency of the sampling. Unless the number of photon
packets is dramatically increased (which becomes computationally expensive), this
leads to larger shot noise and visible fluctuations in the synthetic light curves.

Relevance to Systematic Uncertainties in Kilonova Modeling
This opacity-scaling analysis provides a physically motivated illustration of how mi-
crophysical modeling uncertainties propagate into observable features of kilonova
light curves. Variations in opacity encapsulate systematic errors arising from un-
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Figure A.1: Light curve plots from POSSIS simulations with scaled opacity. The light curves are
shown for opacities scaled by factor of α (0.5, 1.0, and 2.0). All magnitudes are computed assuming
a luminosity distance of 40 Mpc.

certain atomic physics, ionization conditions, and thermalization processes—factors
that are particularly impactful at early and late times. Because opacity1 directly
influences photon diffusion, even small deviations can lead to observable differences
in brightness and temporal structure, introducing degeneracies between ejecta prop-
erties and radiative transfer assumptions.

The increased irregularity observed at higher opacities further highlights the inter-
play between physical uncertainty and numerical limitations. These effects under-
score the necessity of modeling frameworks that do not assume fixed or static uncer-
tainties but instead allow for time- and filter-dependent treatments, as developed in
this thesis.

1We encourage the readers to refer Refs. [74,76,142,172] for a detailed discussion on the
opacities.
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Figure B.1: 2D posterior distributions for the AT2017gfo with a constant systematic uncertainty
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Figure B.2: Light curve fits for the AT2017gfo with a constant systematic uncertainty of 1 mag.
The band represents the 1 mag systematic uncertainty, solid line represents the best-fit light curve,
black cross represents the observed data and red cross with downward arrow represents the non
detection upper limit.
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Freely Sampled Systematic Uncertainty
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from U(0, 2).



Appendix B. AT2017gfo Plots 67

24

20

16

u

24

20

16

g

24

20

16

r

24

20

16

i

24

20

16

z

24

20

16

y

24

20

16

J

24

20

16

H

24

20

16

K

Time [days]

Bestfit light curve AT2017gfo
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Time- and Filter- Dependent Systematic Uncer-
tainties

Nodes
Parameter

DL Φ ι log10 Mdyn
ej log10 Mwind

ej ln Lmax ln Lmax
ref Runtime

4 41.07+2.18
−2.06 61.48+3.92

−3.61 0.40+0.07
−0.07 −1.99+0.07

−0.05 −1.28+0.05
−0.05 -99 -5.486 35 m 11 s

6 41.43+2.52
−2.42 61.52+3.89

−3.71 0.40+0.07
−0.07 −1.99+0.08

−0.05 −1.29+0.05
−0.05 -99.187 -5.673 1 h 1 m 18 s

8 40.95+2.34
−2.13 60.64+3.82

−3.91 0.40+0.07
−0.07 −1.99+0.07

−0.05 −1.30+0.04
−0.05 -93.873 -0.359 1 h 11 m 42 s

10 41.05+2.57
−2.22 61.27+3.78

−3.90 0.40+0.07
−0.07 −1.99+0.08

−0.05 −1.30+0.04
−0.05 -93.792 -0.278 1 h 51 m 11 s

12 40.95+2.60
−2.14 61.33+3.67

−3.49 0.40+0.07
−0.07 −1.99+0.07

−0.05 −1.29+0.04
−0.04 -87.672 5.842 2 h 39 m 27 s

14 41.94+2.45
−2.35 60.74+3.41

−3.38 0.40+0.07
−0.07 −1.98+0.08

−0.06 −1.29+0.05
−0.05 -88.447 5.067 3 h 25 m 29 s

16 41.00+2.50
−2.10 60.03+3.85

−3.88 0.40+0.07
−0.07 −1.98+0.08

−0.06 −1.29+0.04
−0.05 -90.513 3.001 3 h 31 m 3 s

Table B.1: Posterior values with 2σ CI, maximum log-likelihoods (lnLmax), and maximum log-
likelihood ratios (lnLmax

ref ) values for AT2017gfo with different filter-dependent systematic configu-
ration. lnLmax

ref are computed against the lnLmax of 8 time-node configuration from Tab. 7.2 → p.55
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Figure B.6: Same as Fig. 7.4 → p.59 . The number on the top panel indicates the number of time
nodes.
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CSEDONA Light Curves
Here, we present eleven light curves from the SEDONA model grid, each exhibiting a
characteristic drop in magnitude at approximately 8-10 days (gray shaded region).
Given this behavior, we restricted the use of SEDONA light curves to the first seven
days in the main text to ensure a more consistent and reliable analysis. By limiting
the time range, we focus on the phase where the model remains well-constrained
and avoids potential biases introduced by uncertainties in late-time evolution.
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Figure C.1
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DCode and Documentation

D.1 Code

D.1.1 Parsing systematics from .yaml file
import inspect
import warnings
from pathlib import Path

import yaml
from bilby.core.prior import analytical

warnings.simplefilter("module", DeprecationWarning)

class ValidationError(ValueError):
def __init__(self, key, message):

super().__init__(f"Validation error for ’{key}’: {message}")

ALLOWED_FILTERS = [
"2massh",
"2massj",
"2massks",
"atlasc",
"atlaso",
"bessellb",
"besselli",
"bessellr",
"bessellux",
"bessellv",
"ps1__g",
"ps1__i",
"ps1__r",
"ps1__y",
"ps1__z",
"sdssu",
"uvot__b",
"uvot__u",
"uvot__uvm2",
"uvot__uvw1",
"uvot__uvw2",
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"uvot__v",
"uvot__white",
"ztfg",
"ztfi",
"ztfr",

]

ALLOWED_DISTRIBUTIONS = dict(inspect.getmembers(analytical,
inspect.isclass))

def get_positional_args(cls):
init_method = cls.__init__

signature = inspect.signature(init_method)
params = [

param.name
for param in signature.parameters.values()
if param.name != "self" and param.default ==

inspect.Parameter.empty
]

return params

DISTRIBUTION_PARAMETERS = {k: get_positional_args(v) for k, v in
ALLOWED_DISTRIBUTIONS.items()}

def load_yaml(file_path):
return yaml.safe_load(Path(file_path).read_text())

def validate_only_one_true(yaml_dict):
for key, values in yaml_dict["config"].items():

if "value" not in values or not isinstance(values["value"],
bool):
raise ValidationError(key, "’value’ key must be present

and be a boolean")
true_count = sum(value["value"] for value in

yaml_dict["config"].values())
if true_count > 1:

raise ValidationError("config", "Only one configuration key
can be set to True at a time")
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elif true_count == 0:
raise ValidationError("config", "At least one configuration

key must be set to True")

def validate_filters(filter_groups):
used_filters = set()
for filter_group in filter_groups:

if isinstance(filter_group, list):
filters_in_group = set() # Keep track of filters within this group
for filt in filter_group:

if filt not in ALLOWED_FILTERS:
raise ValidationError(

"filters",
f"Invalid filter value ’{filt}’. Allowed

values are {’, ’.join([str(f) for f in
ALLOWED_FILTERS])}",

)
if filt in filters_in_group:

raise ValidationError(
"filters",
f"Duplicate filter value ’{filt}’ within the

same group.",
)

if filt in used_filters:
raise ValidationError(

"filters",
f"Duplicate filter value ’{filt}’. A filter

can only be used in one group.",
)

used_filters.add(filt)
filters_in_group.add(filt)
# Add the filter to the set of used filters within this group

elif filter_group is not None and filter_group not in
ALLOWED_FILTERS:
raise ValidationError(

"filters",
f"Invalid filter value ’{filter_group}’. Allowed

values are {’, ’.join([str(f) for f in
ALLOWED_FILTERS])}",

)
elif filter_group in used_filters:

raise ValidationError(
"filters",
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f"Duplicate filter value ’{filter_group}’. A filter
can only be used in one group.",

)
else:

used_filters.add(filter_group)

def validate_distribution(distribution):
dist_type = distribution.get("type")
if dist_type not in ALLOWED_DISTRIBUTIONS:

raise ValidationError(
"distribution type",
f"Invalid distribution ’{dist_type}’. Allowed values are

{’, ’.join([str(f) for f in ALLOWED_DISTRIBUTIONS])}",
)

required_params = DISTRIBUTION_PARAMETERS[dist_type]

missing_params = set(required_params) set(distribution.keys())
if missing_params:

raise ValidationError(
"distribution", f"Missing required parameters for

{dist_type} distribution: {’, ’.join(missing_params)}"
)

def create_prior_string(name, distribution):
dist_type = distribution.pop("type")
_ = distribution.pop("value", None)
_ = distribution.pop("time_nodes", None)
_ = distribution.pop("filters", None)
prior_class = ALLOWED_DISTRIBUTIONS[dist_type]
required_params = DISTRIBUTION_PARAMETERS[dist_type]
params = distribution.copy()

extra_params = set(params.keys()) set(required_params)
if extra_params:

warnings.warn(f"Distribution parameters {extra_params} are
not used by {dist_type} distribution and will be ignored")

params = {k: params[k] for k in required_params if k in params}

return f"{name} = {repr(prior_class(**params, name=name))}"
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def handle_withTime(values):
validate_distribution(values)
filter_groups = values.get("filters", [])
validate_filters(filter_groups)
result = []
time_nodes = values["time_nodes"]

for filter_group in filter_groups:
if isinstance(filter_group, list):

filter_name = "___".join(filter_group)
else:

filter_name = filter_group if filter_group is not None
else "all"

for n in range(1, time_nodes + 1):
prior_name = f"sys_err_{filter_name}{n}"
result.append(create_prior_string(prior_name,

values.copy()))

return result

def handle_withoutTime(values):
validate_distribution(values)
return [create_prior_string("sys_err", values)]

config_handlers = {
"withTime": handle_withTime,
"withoutTime": handle_withoutTime,

}

def main(yaml_file_path):
yaml_dict = load_yaml(yaml_file_path)
validate_only_one_true(yaml_dict)
results = []
for key, values in yaml_dict["config"].items():

if values["value"] and key in config_handlers:
results.extend(config_handlers[key](values))

return results

D.1.2 Injecting systematic configuration into PriorDict
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from bilby.core.prior import PriorDict as _PriorDict
from . import systematics

def from_list(self, systematics):
"""
Similar to ‘from_file‘ but instead of file buffer, takes a list

of Prior strings
See ‘from_file‘ for more details
"""

comments = ["#", "\n"]
prior = dict()
for line in systematics:

if line[0] in comments:
continue

line.replace(" ", "")
elements = line.split("=")
key = elements[0].replace(" ", "")
val = "=".join(elements[1:]).strip()
prior[key] = val

self.from_dictionary(prior)

setattr(_PriorDict, "from_list", from_list)

class ConditionalGaussianIotaGivenThetaCore
(ConditionalTruncatedGaussian):

...

...

...
def create_prior_from_args(model_names, args):

AnBa2022_intersect = list(set([’AnBa2022_linear’,
’AnBa2022_log’]) & set(model_names))

if len(AnBa2022_intersect) > 0:
...
...
...

else:
priors = bilby.gw.prior.PriorDict(args.prior)

if args.systematics_file is not None:
systematics_priors =

systematics.main(args.systematics_file)
priors.from_list(systematics_priors)
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return priors

D.1.3 Likelihood Calculation
from __future__ import division

import numpy as np
import scipy.stats
from scipy.interpolate import interp1d
from scipy.stats import truncnorm
from pathlib import Path
import yaml

from . import utils, systematics

class OpticalLightCurve(Likelihood):
...
...
...

self.systematics_file = systematics_file
...
...
...
def log_likelihood(self):

lbol, mag_abs = self.light_curve_model.generate_lightcurve(
self.sample_times, self.parameters

)
...
...
...
if self.systematics_file is not None:

yaml_dict = yaml.safe_load(
Path(self.systematics_file).read_text())

systematics.validate_only_one_true(yaml_dict)

if yaml_dict["config"]["withTime"]["value"]:
n = yaml_dict["config"]["withTime"]
["time_nodes"]
time_array = np.round(np.linspace(self.tmin,

self.tmax, n), 2)
yaml_filters = yaml_dict["config"]["withTime"]
["filters"]
systematics.validate_filters(

yaml_filters)
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for filter_group in yaml_filters:
if isinstance(filter_group, list):

filt = "___".join(filter_group)
elif filter_group is None:

filt = "all"
else:

filt = filter_group

globals()[f"sys_err_{filt}_array"] = np.array([])

for i in range(1, n + 1):
value = self.parameters.get(f"sys_err_
{filt}{i}")
globals()[f"sys_err_{filt}_array"] =

np.append(globals()[f"sys_err_
{filt}_array"], value)

for filter_group in yaml_dict["config"]["withTime"]
["filters"]:

if isinstance(filter_group, list):
filt = "___".join(filter_group)

elif filter_group is None:
filt = "all"

else:
filt = filter_group

globals()[f"sys_err_{filt}_interped"] =
interp1d(time_array,
globals()[f"sys_err_{filt}_array"],
fill_value="extrapolate", bounds_error=False)

# compare the estimated light curve and the measured data
minus_chisquare_total = 0.0
gaussprob_total = 0.0
for filt in self.filters:

# decompose the data
data_time = self.light_curve_data[filt][:, 0]
data_mag = self.light_curve_data[filt][:, 1]
data_sigma = self.light_curve_data[filt][:, 2]

if self.systematics_file is not None:
if yaml_dict["config"]["withTime"]
["value"]:

yaml_filters = yaml_dict["config"]["withTime"]
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["filters"]

filter_group_finite_idx_match = False

if yaml_filters is not None and yaml_filters != []:
for yaml_filt in yaml_filters:

if yaml_filt is not None and filt in
yaml_filt:
if isinstance(yaml_filt, str):

filters_to_use = yaml_filt
elif isinstance(yaml_filt, list):

filters_to_use = "___".join(
yaml_filt)

filter_group_finite_idx
_match = True
break

if not filter_group_finite_idx_match:
filters_to_use = "all"

data_sigma = np.sqrt(data_sigma**2 +
(globals()[f"sys_err_{filters_

to_use}_interped"](data_time)) ** 2)

elif yaml_dict["config"]["withoutTime"]
["value"]:

data_sigma = np.sqrt(data_sigma**2 +
self.parameters["sys_err"] ** 2)

# include the error budget into calculation
elif ’sys_err’ in self.parameters:

data_sigma = np.sqrt(data_sigma**2 +
self.parameters[’sys_err’]**2)

else:
data_sigma = np.sqrt(data_sigma**2 +

self.error_budget[filt]**2)

# evaluate the light curve magnitude at the data points
mag_est = mag_app_interp[filt](data_time)

# seperate the data into bounds (inf err) and actual measurement
infIdx = np.where(~np.isfinite(data_sigma))[0]
finiteIdx = np.where(np.isfinite(data_sigma))[0]
...
...
...
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if len(infIdx) > 0:
if self.systematics_file is not None:

if yaml_dict["config"]["withTime"]
["value"]:

yaml_filters = yaml_dict["config"]["withTime"]
["filters"]

filter_group_infinite_idx_match = False

if yaml_filters is not None and yaml_filters
!= []:
for yaml_filt in yaml_filters:

if yaml_filt is not None and filt in
yaml_filt:
if isinstance(yaml_
filt, str):

upperlim_sigma = globals()[f"sys
_err_{yaml_filt}_
interped"]
(data_time)
[infIdx]

elif isinstance(yaml_
filt, list):

filters_to_use = "___".join(yaml
_filt)
upperlim_sigma = globals()[f"sys
_err_{filters_to_
use}_interped"]
(data_time)
[infIdx]

filter_group_infinite
_idx_match = True
break

if not filter_group_infinite_idx
_match:

filters_to_use = "all"
upperlim_sigma = globals()[f"sys_err_
{filters_to_use}_interped"]
(data_time)[infIdx]

gausslogsf = scipy.stats.norm.logsf(
data_mag[infIdx], mag_est[infIdx],

upperlim_sigma)
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elif yaml_dict["config"]["withoutTime"]
["value"]:

upperlim_sigma = self.parameters["sys_err"]
gausslogsf = scipy.stats.norm.logsf(

data_mag[infIdx], mag_est[infIdx],
upperlim_sigma)

elif ’sys_err’ in self.parameters:
upperlim_sigma = self.parameters[’sys_err’]
gausslogsf = scipy.stats.norm.logsf(data_mag
[infIdx], mag_est[infIdx], upperlim_sigma)

else:
...
...
...

return log_prob

D.2 Documentation

NMMA currently uses --error-budget to specify the constant systematic uncer-
tainties to be added to the likelihood quadrature.

However, it is now possible to use systematic error (σsys) prior in form of a freely sam-
pled parameter, time dependent and/or filter dependent systematic error. This can
done by specifying the file path using the --systematics-file flag in lightcurve-analysis
command.

For more information on systematics error, refer to the main text or Ref. [1].

D.2.1 Freely Sampled Systematic Uncertainty

In this case the systematic error is freely sampled and is not dependent on time or
filter.
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config:
withTime:

value: false
filters:

null
time_nodes: 4
type: Uniform
minimum: 0
maximum: 2

withoutTime:
value: true
type: Uniform
minimum: 0
maximum: 2

D.2.2 Time Dependent Systematic Uncertainty
In this configuration, a time dependent single systematic error is applied across all
filters.

config:
withTime:

value: true
filters:

null
time_nodes: 4
type: Uniform
minimum: 0
maximum: 2

withoutTime:
value: false
type: Uniform
minimum: 0
maximum: 2

D.2.3 Time and Filter Dependent Systematic Uncertainty
In this configuration, the sdssu and ztfr filters are sampled together for system-
atic errors, while the 2massks filter is sampled independently. All other filters are
grouped and sampled together.
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config:
withTime:

value: true
filters:

[sdssu, ztfr]
[2massks]
null

time_nodes: 4
type: Uniform
minimum: 0
maximum: 2

withoutTime:
value: false
type: Uniform
minimum: 0
maximum: 2

D.2.4 Distribution types
Distribution can be of any of the analytical prior from bilby . Refer to bilby
documentation for more information on the available distribution type and their
usage. Only positional arguments are required for any of the distrbutions.

https://git.ligo.org/lscsoft/bilby
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